ОСОБЕННОСТИ ПЕРОВСКИТА КАРБОНАТИТОВЫХ МАССИВОВ МАЙМЕЧЕ-КОТУЙСКОЙ ЩЕЛОЧНОЙ ПРОВИНЦИИ

Гриценко Ю.Д.

Перовскит является характерным акцессорным минералом щелочных ультраосновных массивов с карбонатитами. В некоторых массивах перовскит образует значительные скопления.

соединениях группы перовскита ABO_3 основными R природных видообразующими катионами являются Ca, Na, REE, Sr, Pb и K в позиции A; Ti, Nb и Fe в позиции *B*, обычны изоморфные примеси Th, U, Ta, A1, Si, Zr, Mg и Mn (Mitchell et all., 2017). Группа перовскита включает следующие минеральные виды: перовскит CaTiO₃ (Rose, 1839); лопарит (Ce,Na,Ca)(Ti,Nb)O₃ (Кузнецов, 1925); луешит NaNbO₃ (Satiannikoff, 1959); латраппит (Ca,Na)(Fe,Nb,Ti)O₃ (Nickel, 1964); македонит PbTiO₃ (Radusinovio, Markov, 1971); таусонит SrTiO₃ (Воробьев и др., 1984); изолуешит (Na,La,Ca,Sr) (Nb,Ti)O₃ (Chakhmouradian et al., 1997), бариоперовскит BaTiO3 (Ma, Rossman, 2008), мегавит CaSnO3 (Galuskin, Galuskina, Gazeev, 2011), гольдшминдит KNbO3 (Meyer et all., 2018). Все перечисленные минеральные виды, за исключением македонита, изолуешита, мегавита и гольдшминдита, связаны между собой непрерывными или близкими к непрерывным изоморфными рядами. В карбонатитоносных массивах химический состав минералов группы перовскита эволюционирует по трем основным трендам: луешитовому (обогащение Na и Nb), латраппитовому (обогащение Fe и Nb) и лопаритовому (обогащение Na и REE) (Шахмурадян, 1995).

Маймече-Котуйская щелочная провинция располагается в бассейне рек Котуя и Маймечи, в северной части Сибирской платформы, на территории Таймырского (Долгано-Ненецкого) округа, Красноярский край. На этой территории находится более десятка карбонатитовых массивов, причем многие из них содержат минералы группы перовскита. Были изучены перовскиты из самых крупных массивов этой провинции – Гулинского, Одихинча и Кугда. Массивы представляют собой кольцевые интрузии, сложенные внедрившимися якупирангртами, последовательно оливинитами, существенно мелилитовыми (турьяиты, окаиты) и существенно нефелиновыми (уртиты, ийолиты, мельтейгиты) породами, карбонатитами и фоскоритами (Егоров, 1969). Перовскит встречается во всех породах, обладая своими типоморфными особенностями в каждом типе.

Рис. 1. Двойник прорастания перовскита. Размер кристалла 8 мм. Кугда. Фото В. Левицкий.

Наиболее крупные скопления перовскита в перидотитах характерны для Кугдинского массива, где они слагают промышленные залежи перовскиттитаномагнетитовых руд (рудные оливиниты и рудные пироксениты). Кугдинский массив расположен в северной части Маймеча-Котуйской провинции. Центральный тип строения массива

подчеркивается концентрическим расположением слагающих его пород, наибольшим распространением пользуются оливиниты, в меньшем объеме развиты нефелинпироксеновые и мелилитовые образования. Образование перовскита в оливинклинопироксеновых меланефелинитах контролировалось недосыщенностью исходного расплава SiO₂ при повышенных концентрациях в нем Са и Ті. Габитус кристаллов перовскита псевдокубический, часто образует двойники проростания (рис. 1), состав близок к теоретическому (табл. 1., ан. № 1). Для перидотитов большинства массивов характерно образование перовскита в результате взаимодействия ранних минералов этих пород с мелилитовым, якупирангитовым расплавом, обогащенным кальцием. В таких случаях перовскит образует реакционные каймы шириной 0,1-3 мм вокруг зерен титаномагнетита (рис. 2). Состав этого перовскита также близок к стехиометричному. Иногда содержит невысокие содержания железа (табл. 1, ан. 2,3).

Рис. 2. Каймы перовскита (серое) вокруг зерна титаномагнетита (светло-серое) со структурами распада ильменита и ульвошпинели (темносерое). Фотографии в отраженном свете.

В ийолит-пегматитах массива Одихинча перовскит не получил широкого распространения. Основными титановыми минералами этих пегматитовых жил являются титановые гранаты – моримотоит и меланит. Лишь в нескольких пегматитовых жилах перовскит образует сростки хорошо ограненных кристаллов октаэдрического габитуса. Причем в ассоциации с перовскитом гранат относительно беден титаном, содержание TiO₂ в нем не превышает 5 мас. %. Перовскит беден примесями, содержание Nb₂O₃, Ce₂O₃, Fe₂O₃, Na₂O не превышает 0.8 мас. % (табл.1, ан. 4).

Среди редких сиенитовых жил пегматитов в ассоциации с микроклином, эгирином, нефелином, минералами группы эвдиалита при относительном возрастании содержания SiO₂ в исходном расплаве, вместо перовскита широким распространением пользуется сфен, образующий в пегматитах кристаллы размером до 1 см.

Наиболее богаты перовскитом турьяиты и окаиты – мелилитовые породы, пегматоидные жилы и метасоматиты, широко распространенные в центральной части Гулинского плутона. Перовскит в ассоциации с мелилитом, флогопитом и апатитом, а также в апомелилитовых диопсид-кальцитовых породах образует отдельные зерна, кристаллы и мономинеральные шлиры длинной до 30 см, размер отдельных кристаллов достигает 5,5-6 см. Перовскит обладает кубооктаэдрическим габитусом и беден примесями.

Рис. 3. Зональный кристалл перовскита в ассоциации с пирротином (белое), кальцитом, апатитом (черное) из фоскоритов Гулинского массива. Фотография в отраженных электронах.

В отличие от карбонатитовых массивов региона, Карело-Кольского массивы Маймече-Котуйской провинции содержат небольшое количество фоскоритов. Фоскориты Гулинского плутона образуют штокообразные тела до нескольких метров В поперечнике, состоящие ИЗ апатита, диопсида, кальцита, флогопита, магнетита, форстерита, перовскита, цирконолита, пирротина, джерфишерита и

др. Перовскит образует сложно-зональные хорошо ограненные кристаллы кубического,

реже кубооктаэдрического облика в (рис. 3). Он содержит до 12 мас. % Nb₂O₅, до 19 мас. % REE, т.е. проявлен лопаритовый тренд, характерный для рудных шлиров, ийолитпегатитов и кальцит-амфибол-диопсидовых пород (Шахмурадян, 1996) (табл. 1, ан. 5-19). Зональность в перовскитах носит осцилляционный характер, зоны, богатые REE обеднены Nb, коэффициент парной корреляции REE - Nb = -0,7. Такой сложный характер зональности вероятно связан с неоднородностью метасоматических растворов, формирующих породы фоскоритовой серии. Содержания La и Ce в перовските близкие. В целом спектры распределения редкоземельных элементов перовскита характеризуются крутым наклоном от легких REE к тяжелым (рис. **4**). По сравнению с сокристаллизующимся апатитом, перовскит в большей степени обогащен легкими лантанидами и обеднен тяжелыми.

Рис. 4. Спектры распределения редкоземельных элементов в апатите и перовските из фоскоритов Гулинского массива. Нормализовано по (Anders, Grevesse, 1989).

В Гулинском массиве выделяют два карбонатитовых тела – Южный и Северный, которые образуют крупные тела до двух км в поперечнике. Перовскит в карбонатитах представлен ниобиевой разновидностью – дизанолитом. Он образует одиночные или сдвойникованные кристаллы кубического облика размером до 2,2 см (Рис. 5). Содержание Nb₂O₅ составляет 10-15 мас. %, достигая в некоторых участках 17,5 мас. % (табл. 1, ан. 20-22).

Рис. 5. Кристаллы Nb-содержащего перовскита из карбонатитов Гулинского массива.

Таблица 1. Состав перовскита карбонатитовых массивов Маймече-Котуйской щелочной провинции в мас. %.

	Na ₂ O	CaO	TiO ₂	FeO	Nb ₂ O ₃	La ₂ O ₃	CeO ₂	Nd ₂ O ₃	сумма
1	нпо	39,08	57,04	нпо	нпо	нпо	нпо	нпо	96,12
2	нпо	39,15	58,18	нпо	нпо	нпо	нпо	нпо	97,33

3	нпо	41,24	57,45	0,48	нпо	нпо	нпо	нпо	99,17
4	0,2	40,05	55,24	0,21	0,82	нпо	нпо	нпо	96,32
5	1,99	33,1	50,1	1,39	6,26	0,98	3,14	нпо	94,97
6	2,35	31,9	51,4	2,13	5,4	1,05	4,25	0,2	96,33
7	2,37	34,4	48,5	2,5	9,47	1,11	2,11	нпо	98,09
8	2,55	33,1	48,9	1,69	8,49	1,32	2,99	нпо	96,49
9	2,34	32,4	46,8	1,69	12,1	0,71	2,67	нпо	96,37
10	3,15	32,4	47,9	1,41	11,4	1,06	3,45	нпо	97,62
11	1,11	35	52,3	1,2	3,88	1,3	2,63	нпо	96,31
12	2,24	33,9	51,9	0,89	6,51	0,69	3,48	нпо	97,37
13	1,73	34,1	51,7	1,65	4,56	1,51	4,14	нпо	97,66
14	1,86	34,26	52,74	1,21	2,97	1,15	3,21	нпо	95,54
15	2,88	27,9	52,52	0,59	1,28	4,21	8,05	3,03	97,58
16	3,32	28,7	52,8	нпо	0,49	4,69	9,96	нпо	96,64
17	1,77	34,3	52,5	1,74	3,05	1,01	2,57	нпо	95,17
18	1,81	34,1	52,8	1,46	5,25	1,38	4,12	нпо	99,11
19	1,37	35,6	49,1	3,15	5,43	1,37	2,71	нпо	97,36
20	0,98	37,27	46,91	3,97	10,93	нпо	нпо	нпо	99,08
21	2,12	35,53	40,31	4,08	17,26	нпо	нпо	нпо	97,18
22	1,76	37,32	44,32	4,04	12,05	нпо	нпо	нпо	97,73

Примечание. Химический анализ проведен в Минералогическом музее имени А.Е. Ферсмана РАН с помощью электронно-зондового микроанализатора «Camebaxmicrobeam» (Франция) с энергодисперсионным Si(Li)-детектором и системой анализа INCA Energy Oxford (ускоряющее напряжение 20 кВ, ток пучка 30 нА).«нпо» - содержание элемента ниже предела обнаружения.

Таким образом, в карбонатитовых массивах Маймече-Котуйской щелочной провинции от наиболее ранних серий пород (ультраосновной мельтейгит-уртитовой и турьяитовой) к более поздним сериям химический состав перовскита эволюционировал по двум основным трендам: в кальцитовых и доломитовых карбонатитах по луешитовому (обогащение натрием и ниобием); в фоскоритах – по лопаритовому (обогащение натрием и редкоземельными элементами).

Литература

Воробьев Е.И., Конев А.А., Малышонок Ю.В., Афонина Г.Г., Сапожников А.Н. Таусонит SrTiO3-новый минерал из группы перовскита // ЗВМО. 1984. Часть 113. Вып. 1, стр. 86–89.

Кузнецов И.Г. Лопарит – новый редкоземельный минерал из Хибинских тундр // Известия Геологического комитета. 1925. Вып. 44. С. 663–682.

Егоров Л.С. Ийолит-карбонатитовый плутонизм. Л.: Недра. 1991. 260 с.

Егоров Л.С. Мелилитовые породы Маймеча-Котуйской провинции. Л.: Недра. 1969. 248 с.

Шахмурадян А.Р. Минералы группы перовскита из горных пород щелочных магматических формаций Кольского полуострова. Автореф. Канд. г.-мн. н. С.-Пб. 1996.

Anders E., Grevesse N. Abundances of the elements: meteoritic and solar // Geochim. Cosmochim. Acta. 1989. V. 53.P. 197–214.

Chakhmouradian A.R., Yakovenchuk V.N., Mitchell R.H., Bogdanova A.N. Isolueshite; a new mineral of the perovskite group from the Khibina alkaline complex // European Journal of Mineralogy.1997. V. 9. P. 483–490.

Galuskin E.V. Galuskina I.O., Gazeev V.M., Dzierzanowski P., Prusik K., Pertsev N.N., Zadov A.E., Bailau R., Gubanov A.G. Megawite, CaSnO3: A new perovskite-group mineral from skarns of the Upper Chegem-caldera, Kabardino-Balkaria, Northern Caucasus, Russia // Mineralogical Magazine. 2011. V. 75. P. 2563–2572.

Ma C., Rossman G.R. Barioperovskite, BaTiO3, a new mineral from the Benitoite Mine, California // American Mineralogist. 2008. V. 93. P. 154–157.

Meyer N.A., Wenz M.D., Walsh J. P.S., Jacobsen S.D., Locock A.J. and Harri, J.W. Goldschmidtite, IMA 2018-034 // Mineralogical Magazine. 2018. V. 82. P. 1015–1021.

Mitchell R.H., Welch M.D., Chakhmouradian A.R. Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition // Mineralogical Magazine. 2017. V. 81(3). P. 411–461.

Nickel E.H. Latrappite – a proposed new mineral name for the perovskite-type calcium niobate mineral from the Oka area of Québec //The Canadian Mineralogist. 1964. V. 8. P. 121–122.

Radusinovic D., Makov C. Macedonite – lead titanate: A new mineral // American Mineralogist. 1971. V. 56. P. 387–394.

Ros G. Beschreibung einiger neuer Mineralien vom Ural // Pogendorff Annalen der Physik und Chemie. 1839. V. 48. P. 551–572.

Safianikoff, A. Un nouveau minéral de niobium // Academe des Seances Royale de l'Outre-mer Bulletin. 1959. V. 5. P. 1251–1255.