НОВЫЙ ФЕРРО-ФЕРРИМЕТР – УРАВНЕНИЕ ДЛЯ РАСЧЁТА Fe³⁺/Fe²⁺ В СИЛИКАТНЫХ РАСПЛАВАХ ПРИРОДНОГО РАСПЛАВА

Коптев-Дворников Е.В., Бычков Д.А.

Отношение Fe³⁺/Fe²⁺ в силикатных расплавах существенно влияет на появление на ликвидусе хромшпинели, магнетита, ильменита, а также на ликвационное отделение сульфидной жидкости от силикатного расплава, определяя вероятные уровни накопления этих рудных минералов в расслоенных мафит-ультрамафитовых расслоенных интрузивах (Арьяева H.C. и др., 2016; Арьяева H.C. и др., 2018; Коптев-Дворников E.B. и др., 2012). Это отношение определяется, прежде всего, летучестью кислорода в расплаве и составом расплава.

К настоящему времени предложен ряд уравнений, связывающих Fe³⁺/Fe²⁺ в расплаве с его составом и летучестью кислорода [Sack RO et al., 1980; Kilinc A et al., 1983; Николаев Г.С. и др., 1996 и др.]. Эти уравнения были получены в результате статистической обработки экспериментальных данных и, следовательно, сильно зависят от вовлечённой в обработку выборки экспериментальных данных.

В недавно опубликованной работе А.А.Борисова [Alexander Borisov et al., 2018] рассмотрены предыдущие подходы и на основе наиболее полной на сегодня выборки экспериментальных данных (результаты 435 экспериментов) предложено уравнение для расчёта Fe³⁺/Fe²⁺, имеющее вид:

 $lg(X_{FeO_{1.5}} / X_{FeO}) = k lg f_{O_2} + h/T + \sum d_i X_i + d_{SiAl} X_{SiO_2} * X_{Al_2O_3} + d_{SiMg} X_{SiO_2} * X_{MgO} + c$ (1) где *T* – абсолютная температура; *k*, *h*, *d_i*, *d_{SiAl}*, *d_{SiMg}* – коэффициенты при соответствующих

переменных, *с* – константа и *X_i* – мольная доля *i*-ого компонента расплава.

Однако эта выборка включает много составов, выходящих за пределы природных магматических систем. Два обстоятельства нас насторожили:

экспериментальных расплавов (рис. 1), возможны ложные корреляции при

2) после оптимизашии линейного уравнения МНК. несмотря на практически идеальную корреляцию между расчётными эксперименталь-И ными логарифмами отношений, корреляция между

самими значениями Fe³⁺/Fe²⁺не столь хороша (рис. 2). Применение критерия согласия показало ненормальное распределение остатков.

Мы ограничили выборку составами базитов нормального ряда от коматиитовых базальтов до дацитов, убрав составы с экстремальными содержаниями TiO₂ и P₂O₅. Мы полагаем использовать модифицированное уравнение при моделировании динамики формирования

мафит-ультрамафитовых дифференцированных комплексов. При моделировании равновесий силикатный расплав _ твёрдые фазы в этих системах для определения активностей компонентов расплавов ΜЫ используем двухрешёточную модель силикатной

жидкости (Nielsen, Drake,1979; Nielsen, Dungan, 1983), поэтому мы удалили составы с отрицательными значениями Al-Na-K.

В выборке осталось 370 экспериментальных результатов.

Многогранник экспериментальных составов расплавов координатах В концентраций оксидов для 370 выборки ИЗ экспериментальных значений, характеризуется следующими вели-

для

И

В (1)

для

чинами (в массовых процентах): SiO₂ от 36 до 68, TiO₂ от 0 до 10, Al₂O₃ от 6 до 30, FeO* от 2 до 22 (FeO^{*} – все железо, пересчитанное на FeO), MgO от 0 до 21, CaO от 0 до 25, Na₂O от 0 до 8, K₂O от 0 до 9, P₂O₅ от 0 до 2. Фигуративные точки составов расплавов выборки представлены на рис. 3. Характер их распределения исключает вероятность наличия ложных корреляций.

Диапазон интенсивных параметров выборки характеризуется: температурой от 1195 до 1635° С, одноатмосферным давлением для всей выборки, летучестью кислорода $\lg fO_2$ от -9.97 до -0.68 (на воздухе) (от QFM-3.45 до QFM+7.56).

продемонстрировало прекрасную корреляцию между логарифмами расчётных И $X_{FeO_{15}} / X_{FeO}$, экспериментальных отношений однако корреляция между самими

отношениями стала даже хуже (рис. 4). Применение критерия согласия показало, что распределение остатков не является нормальным

Мы уже сталкивались с подобными обстоятельствами при выводе уравнений, описывающих равновесие силикатных расплавов с сульфидной жидкостью и твёрдыми фазами (Коптев-Дворников Е.В. и др., 2012; Арьяева Н.С. и др., 2016; Арьяева Н.С. и др., 2018). Для преодоления этой ситуации мы, сохранив предложенный А.А.Борисовым набор переменных в уравнении (1), искали коэффициенты путём оптимизации не линейного относительно $lg(X_{FeO_{1.5}} / X_{FeO})$ уравнения, а степенной функции:

$$X_{FeO_{1.5}} / X_{FeO} = 10^{k \lg f_{O_2} + h/T + \sum d_i X_i + d_{SiAl} X_{SiO_2} * X_{Al_2O_3} + d_{SiM_g} X_{SiO_2} * X_{MgO} + c}$$
(2)

Оптимизация заключается в минимизации суммы квадратов остатков отношений $X_{FeO_{1.5}} / X_{FeO}$ с использованием надстройки «поиск решения» в программе Excel. Результат представлен на рис. 5. Значения коэффициентов и константы приведены в таблице.

Таблица. Значения коэффициентов при переменных и константы в уравнении (2)

k (при lgfO ₂)	0.215865	d_{TiO_2}	7.24868	dMgO	9.33415	dK ₂ O	12.1616
<i>h</i> (при 1/Т)	4832.951	$d_{Al_2O_3}$	9.90056	dCa0	8.08305	dSiAl	-7.39484
d_{SiO_2}	7.57506	d _{FeO} *	7.55480	dNa ₂ O	9.94092	dSiMg	-4.14444
						С	-9.85265

Судя по гистограмме на рисунке 5, распределение остатков является нормальным. Это подтверждается и критерием согласия. Нормальность распределения остатков позволяет рассматривать их как случайные отклонения от расчетных величин, вызванные аналитическими погрешностями, отклонениями от равновесия, погрешностями измерения экспериментальных параметров и т.п. и использовать для оценки качества уравнения (2) доверительные интервалы. Преимуществом доверительных интервалов является их нацеленность, в отличие от дисперсии, не на оценку качества единичного измерения, а на определение отклонения расчётной величины от истинного значения при заданной вероятности границ. Полезными свойствами доверительных интервалов являются возможность их определения для зависимостей (в случае нормального распределения остатков) и возможность их сужения путем увеличения числа измерений.

На рис. 5 голубым цветом выделен доверительный коридор для уровня надёжности 95%. В диапазоне отношений $X_{FeO_{1.5}} / X_{FeO}$ от 0 до 2.6 с вероятностью 95% расчётное отношение форм железа отличается от неизвестного истинного на величину, не превышающую ±0.018. В области более высоких отношений доверительный интервал постепенно растёт, достигая величины ±0.08 при отношении $X_{FeO_{1.5}} / X_{FeO}$ равном 7. На

всём интервале значений $X_{FeO_{1.5}} / X_{FeO}$ линия равных значений лежит внутри доверительного коридора.

Благодарности. Авторы благодарят Александра Александровича Борисова (ИГЕМ РАН) и его соавторов за публикацию наиболее полной на сегодня выборки экспериментальных данных, которая легла в основу нашего исследования.

Литература.

- Арьяева Н.С., Коптев-Дворников Е.В., Бычков Д.А. Ликвидусный термобарометр для моделирования равновесия хромшпинелиды-расплав: метод вывода и верификация // Вестник Московского университета. 2016. № 4. С. 30–39.
- Арьяева Н.С., Коптев-Дворников Е.В., Бычков Д.А. Ликвидусный термобарометр для моделирования равновесия магнетит-расплав // Вестник Московского университета. 2018. № 1. С. 70–79.
- Коптев-Дворников Е.В., Арьяева Н.С., Бычков Д.А. Уравнение термобарометра для описания сульфид-силикатной ликвации в базитовых системах // Петрология. 2012. Т. 20. № 5. С. 1–18.
- Николаев Г. С., Борисов А. А., Арискин А. А. Расчет соотношения Fe³⁺/Fe²⁺ в магматических расплавах: тестирование и дополнительная калибровка эмпирических уравнений для различных петрохимических серий // Геохимия. 1996. № 8. С. 713–722.
- Kilinc A, Carmichael ISE, Rivers ML, Sack RO (1983) The ferricferrous ratio of natural silicate liquids equilibrated in air. // Contributions to Mineralogy and Petrology. V. 83. P. 136– 140.
- Alexander Borisov, Harald Behrens, Francois Holtz. Ferric/ferrous ratio in silicate melts: a new model for 1 atm data with special emphasis on the effects of melt composition // Contributions to Mineralogy and Petrology. 2018. V. 173. P. 98-113.
- Nielsen R. L., Drake M. J. Pyroxene–Melt Equilibria // Geochim. Cosmochim. Acta. 1979. 43. P. 1259–1272.
- Nielsen, R.L., Dungan, M.A. Low-pressure mineral-melt equilibria in natural anhydrous mafic systems. // Contrib. Mineral. Petrol. 1983. 84. P. 310–326.
- Sack RO, Carmichael ISE, Rivers ML, Ghiorso MS (1980) Ferric-ferrous equilibria in natural silicate liquids at 1 bar // Contributions to Mineralogy and Petrology. 1980. V. 75. P. 369– 376.