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Alexander Vladimirovich Arhangel’skii

by Olga Sipacheva

A good mathematician ... never
grows old. He remains a child. He
remains a dreamer: curious,
imaginative, free of concrete purpose.

—Alexander Arhangel’skii,
interview to The Idler (1993)

“Arhangel’skii has a stratospheric reputation and has been regarded over the
last thirty |[written in 2010] years as one of the most important general and set
theoretic topologists,”—said Peter Collins of Oxford University, United Kingdom,
in a letter nominating Arhangel’skii for the Ohio University Distinguished Pro-
fessor Award. According to other colleagues from various countries, Arhangel’skii
is “one of the foremost general topologists in the world today”; his “prodigious re-
search output is exceptional and proves him to be an original thinker and tireless
author of top-quality mathematics”; he is a “great man, creator of C,-theory”; he
possesses “almost mystical intuition.”

Alexander Vladimirovich Arhangel’skii was born on March 13, 1938, into a fam-
ily of artists. His father, Vladimir Aleksandrovich Arhangel’skii, was a concert
pianist, a student of Rachmaninoff and Igumnov and close friend of Sofronitsky, an
associate professor at the Moscow Conservatory. To be more precise, Arhangel’skii
Senior had begun as an aeronautical engineer and even become the first elected
director of Central AeroHydrodynamic Institute, being one of the most promising
students of Zhukovsky, but his great love for music had made him to change the
course of his life. Arhangel’skii’s mother, Mariya Pavlovna Radimova, was an
acknowledged painter, a daughter of the celebrated painter and poet Pavel Alek-
sandrovich Radimov, the last chairman of the Peredvizhniki (Wanderers) society.
Strange as it seems at first glance, it may be a trait inherited from parents—the
ability to tangibly feel harmony and beauty—which is the mainstay of his math-
ematical talent and his incredible intuition. Arhangel’skii once said, “Beauty is,
for me, a sign of the truth. ... When I think about a mathematical problem or
theorem, my intuition suggests to me what should be true... And when I try to
prove it, I will sometimes feel things fitting together harmoniously. It is from
this feeling of harmony that I know my way will work.” [1] In the popular science
article [2] on teaching mathematics Arhangel’skii concluded several paragraphs
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of speculation on the harmony and beauty of mathematics with the following re-
markable words: “The reader may suspect the author of likening mathematics to
an art. No, mathematics is an art! Imagination, inspiration, and illumination are
as important for mathematics as for poetry, music, and painting.”

At secondary school Arhangel’skii’s favorite subject was literature; he also
liked biology and physics. Fortunately, in the end, he had decided to study math-
ematics (although he has always been and still remains a bookworm: he reads
a lot in Russian, English, French, Italian, Spanish, and, very likely, some other
languages). So, in 1954, he passed highly competitive entrance examinations and
entered Moscow State University. During his first year, he took a (required) course
in analytical geometry taught by Pavel Sergeevich Alexandroff, whose magnetic
personality could not but attract him, and attended Vitushkin’s introductory sem-
inar on function theory, which provoked his interest in set theory and functions of
a real variables. These two circumstances have decided his fate: when Alexandroff
started an introductory seminar in set-theoretic topology, Arhangel’skii attended
the very first session and decided, right during the session, to specialize in topol-
ogy. Thus, Arhangel’skii the topologist was born in 1955, and Pavel Sergeevich
Alexandroff, one of the most outstanding Russian mathematicians and one of the
foremost pioneers of topology, had become his mentor.

In 1959 Arhangel’skii, still an undergraduate student, obtained his first im-
portant result and published his first paper, which has become the first of more
than five hundred Arhangel’skii’'s papers. That was a metrization theorem for
compact spaces based on the new notion of a network in a topological space. The
result was good, but of most consequence was the introduction of the concept of a
network, which is now a classical cornerstone concept in general topology. This is
very typical of Arhangel’skii’s work. Although he has proved numerous beautiful
theorems, he has always been striving to gain insight into the essence of things
rather than simply solve existing problems. It is hard to find better words than
those used by Karen Shenfeld in her 1993 interview with Arhangel’skii [1]: “He has
won for himself an eternal place in the history of topology, not so much through
the resolution of difficult problems (though he has solved his fair share) but rather
through the creation of concepts. These concepts ... have become fundamental
to the ways in which topologists think about space.” Some of the fundamental
notions introduced by Arhangel’skii (in addition to the notion of a network) are
those of tightness, free sequence, strong development, regular base, 7-monolithic
space, T-balanced, T-bounded (7-narrow), and 7-representable topological group,
o-paracompactness, p-space, a;-space, cleavability, Moscow space, and so on; the
list might be made very long. Arhangel’skii is also very resourceful in invent-
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ing amazingly impressive and associative names for new objects and properties:
feathered, lacy, favorable, Moscow, monolithic, radial, cleavable, and so on.

The same year Arhangel’skii graduated, married, and was admitted as a post-
graduate student at Moscow State University. Two years later, in 1961, Arhan-
gel’skii participated in his first international conference, the First Symposium on
General Topology in Prague; since then, he missed only two TOPOSYMs (because
of health problems) and attended many dozens of other conferences, mostly as an
invited speaker.

In 1962 Arhangel’skii was awarded his candidate of sciences degree (the Rus-
sian equivalent of PhD) and had to make a hard choice. At that time, his teacher,
Alexandroff, headed the Department of General Topology at Steklov Mathemat-
ical Institute of the Academy of Sciences of the USSR and was the chairman of
the Department of Higher Geometry and Topology at Moscow State University.
Arhangel’skii had to decide where to work. He had preferred the University with-
out any hesitation, although the Academy was more prestigious and working there
did not require teaching. He has always thought that teaching students and ex-
changing ideas with them are of great help for research; besides, he wanted to be
useful. Time has shown that, indeed, Arhangel’skii second vocation is teaching.
His first PhD student was awarded degree in 1965, and his second and favorite one,
Mitrofan Choban, in 1969. In all, 37 Arhangel’skii’s students have been awarded
PhD degree (see [3]); many of them have become doctors of science (a post-
doctoral degree, Russian analogue of German habilitation) or full professors in
different countries. Mitrofan Choban was his first student awarded the doctor of
science degree. Even now, after more than fifty years, when something goes wrong
with his Skype, Arhangel’skii’s primary concern is communicating with Mitrofan.

Arhangel’skii’s outstanding teaching ability is closely related to his unique tal-
ent for posing problems. Virtually all his talks end with dozens of problems, most
of which are challenging and all interesting. Solving a problem of Arhangel’skii is
a good reason for being proud. Each term several sessions of his seminar (he calls
them “divertissements”) are devoted entirely to problems. During these sessions,
all participants are invited to pose and discuss problems, but nobody can match
Arhangel’skii in this respect. He is very generous in offering his problems to stu-
dents; moreover, he often abstains from thinking on a problem if he believes that
it may have interesting consequences and can possibly be solved by students from
the younger generation. He never assigns (but may offer when needed) particu-
lar problems to his students; instead, he encourages the students to choose the
problems most interesting to them by themselves.

Arhangel’skii’s problems, which are concerned with very diverse areas, along
with his new concepts, have greatly influenced the whole development of topology.
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Apparently, this talent for posing problems originates from Arhangel’skii’s breadth
of interest, which has given him a comprehensive view of topology and enabled
him to see connections hidden from people investigating (maybe, very deeply)
only certain special things. In his 1991 interview to Friends of Mathematics
Newsletter of Kansas State University [4], Arhangel’skii substantiated his choice
of topology as follows: “I consider topology as a fundamental subject. My ideal is
to study one of the basic concepts, maybe not only of mathematics, but one could
also think of it as one of the main concepts of a philosophical nature, of life, of
common sense,—the concept of continuity. So if someone asks me what topology
is about, I would say the main idea is to formalize, mathematically, the idea of
continuity. ... Principles developed in a basic subject like algebra and topology
help to view mathematics as a whole. They help to unify it. ... With those basic
principles, you can try to unify mathematics to have a common language. Also,
I think, general topology is very good for teaching, ... because, being very basic,
it does not need other subjects for beginners. ... Another thing that is probably
related is that there are many, many problems. ... The problems are at any level:
simple, a little bit more difficult, more difficult, and so on. And they appear, some
new ones. My teacher, Alexandroff, was saying that the most important thing in
mathematics for young people is to enter the door to creating mathematics; then
from that door you can move.”

In 1966 Arhangel’skii became Doctor of Science. Awarding this highest aca-
demic degree in Russia at such a young age was (and still remains) quite un-
common, but Arhangel’skii had already been internationally recognized for his
concept of a network and published a couple dozen papers. One of those papers,
entitled Mappings and Spaces [5], was a long (about 50 pages) half-survey, half-
research paper, which contained the first systematic reciprocal classification of
spaces and maps. This paper is also remarkable in that Arhangel’skii showcased
himself not only as an accomplished mathematician but also as a poet (look at
the epigraph: “On the Edges of Darkness / I sing of Your Galaxies”; this is a
loose translation, the Russian original reads as something like “On the branches
of Darkness / Blooms the Lilac of Galaxies.”)

The next year Arhangel’skii applied for membership in the Communist Party
of the Soviet Union. Joining the Party disagreed with his view that the uni-
versity should be free from all politics; however, in his own words, he simply
recognized that, to play a public role in the life of the university at that time, he
had to become a member. Indeed, many of his students, including the author of
this note, would never be accepted as post-graduate students without his strong
“communist” protection (according to formal rules, only the most active members
of Komsomol could be accepted, while young mathematicians often considered
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themselves to be too decent or too busy with science for that, or simply were
too careless). However, too years had passed before Arhangel’skii was admitted
to the Party, because he had signed a letter of protest against the psychiatric
confinement of his elder colleague Esenin-Volpin, who was a notable dissident
(that was his third political imprisonment). The letter was broadcasted by Voice
of America, and Esenin-Volpin was released almost immediately thereafter. The
punishment might have been much more severe than it was (Arhangel’skii was
reprimanded in oral and written form), but Arhangel’skii did not hesitate to put
his signature—he “wanted to state that there were some things that [he| could not
accept” [1].

In 1969 Arhangel’skii proved that the cardinality of any first-countable compact
Hausdorft space does not exceed that of the continuum; thereby, he solved an
almost fifty-year-old problem of Alexandroff and Urysohn. In fact, Arhangel’skii
proved a much more general theorem, namely, that |X| < 2X(X)LX)
Ti-space X . His proof essentially used the new keystone notion of a free sequence
introduced by him in a previous paper; as Richard Hodel mentioned in [7], an
important legacy of the theorem was “the emergence of the closure method as
a fundamental unifying device in cardinal functions.” In [7] Hodel formulated
two criteria for a theorem to be great (the theorem should solve a long-standing
problem, and it must introduce new techniques and generate new results and
open problems) and explains in detail why Arhangel’skii’s theorem satisfies both
requirements.

The first decade of Arhangel’skii’s career as a university faculty member was
crowned with winning the Lenin Komsomol Prize, a very prestigious state award
for young scientists, engineers, and artists. It should also not be forgotten that
his son was born during the same decade (he had already had a baby daughter at
the beginning of his career).

The next two decades were as productive as the first. Arhangel’skii spent
1972-75 in Pakistan, at the University of Islamabad, as the “official UNESCO
expert on topology” (still retaining the position at the Moscow State University),
wrote hundreds of seminal papers and participated in tens of conferences (in fact,
his frequent travels abroad began only with perestroika). In the early 1990s, the
situation in Russia was quite uncertain, and in 1993 Arhangel’skii accepted pro-
fessorship at Ohio University. Since then, he spent half time in Moscow and half
time in Athens, Ohio, every year. In 2003 he was awarded the title of Distin-
guished Professor of Ohio University. However, this did not protect him from
being fired, among other prominent mathematicians, from the Moscow State Uni-
versity for spending too much time abroad. Soon after that yet another, even
worse, misfortune befell Arhangel’skii: he had lost his vision almost completely.

for any
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That was a real calamity for a man who could not live without reading. How-
ever, Arhangel’skii has never given way to despair. First, he learned to listen to
audio books; then, little by little, he began to read electronic books and journal
articles on a computer (huge white letters on black background). Now he again
teaches at the Moscow State University (and again combines this job with work-
ing at another place, this time the Moscow Pedagogical State University), again
leads a seminar, obtains beautiful results, writes papers (during the past year he
published six papers), and delivers keynotes at conferences.

The contribution of Arhangel’skii to topology cannot be overestimated. Not
only has he introduced fundamental concepts and posed seminal problems; he has
also performed a systematic study of classes of maps in relation to topological
properties of spaces; created the theory of p-spaces; investigated the class of sym-
metrizable spaces; proved metrization theorems; made a dominant contribution
to the foundation of C)-theory, the theory of free topological groups, and the the-
ory of generalized topological groups (such as para-, semi-, and quasi-topological
groups); developed the theories of relative topological properties, cleavable spaces,
and weakly normal spaces. At present, he works extensively on topological ho-
mogeneity and remainders of compactifications.

Arhangel’skii has a highly charismatic personality. He is one of those, very
few nowadays, old-school professors who has made Russian science. He is a very
interesting conversationalist and can converse eloquently and competently on any
subject—literature, music, politics, poetry, history, philosophy...

It seems that the most appropriate concluding words are those written by
Arhangel’skii himself |2]:

“Mathematical activity is not for everybody.

“Working with abstract concepts, dealing with them as the most perfect object
of real world (and this attitude is characteristic of any mathematician) are possible
only for those who loves the subject. ...

Doing mathematics requires loving it.”
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Compact complement topologies and a characterization
theorem for k-spaces

M. A. Al Shumrani

Department of Mathematics, King Abdulaziz University,
P.O.Box: 80203, Jeddah 21589, Saudi Arabia

E-mail: maalshmranil®@kau.edu.sa

The compact complement topology of the real line was considered in the book
“Counterexamples in Topology” by Steen and Seebach. In this talk, we will con-
sider the compact complement topology of Hausdorff spaces and we will present
some of its elementary properties. Moreover, we will present a characterization
theorem for k-spaces.

On o-compact groups and their mappings

A. V. Arhangel’skii

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University,
1 Leninskie Gory, Moscow 119991, Russia,

Faculty of Mathematics, Moscow State Pedagogical University,
14 Krasnoprudnaya str., Moscow 107140, Russia

E-mail: arhangel.alex@gmail.com

It is well known which compacta can be represented as continuous images of
compact topological groups: they constitute the class of dyadic compacta. Much
less is known about the compacta which are continuous images of o-compact
topological groups. In connection with the concept of a dyadic compactum, we
naturally come to the next general question:

Question 1. Given a continuous mapping f of a topological group G onto
a compact Hausdorff space Y, when does there exist a compact (a o-compact)
subspace X of G such that f(X)=Y7

If such X exists (which is, clearly, not always the case), then the compactum Y’
is a continuous image of a o-compact subgroup of GG, and we come to the problem
mentioned above.

A result in this direction, which is easy to establish with the help of some deep
facts of topological algebra and of the theory of function spaces, is this statement:

16 A. V. Arhangel’skii



every Eberlein compactum, which is a continuous image of a o-compact topolog-
ical group, is metrizable. In particular, the free topological group of an arbitrary
non-metrizable Eberlein compactum cannot be continuously mapped onto this
compactum.

In this talk, we present some new results on compacta which are continuous
images of o-compact topological groups and some closely related results.

All spaces considered are assumed to be Tychonoff. A condensation is a one-
to-one continuous mapping of one space onto some other space. Below is a typical
result from the talk.

Theorem 1. Suppose that a o-countably compact semitopological group G
condenses onto a sequential Dieudonné complete space Y with the Baire property.
Then G is a separable metrizable locally compact o-compact topological group (and
Y has a countable network).

A new concept of homogeneity type is introduced and applied to the study of
free topological groups. A space X is said to be k-homogeneous if every compact
subspace of X is contained in a homogeneous compact subspace. It is shown that
not every o-compact topological group is k-homogeneous.

On the Mackey topology on abelian topological groups
Lydia Auflenhofer

Fakultat fiir Informatik und Mathematik, Universitéit Passau,
Innstraflie 41, D-94032 Passau, Germany

E-mail: 1ydia.aussenhofer@uni-passau.de

For a locally convex vector space (V,7T) there exists a finest locally convex
vector space topology p such that the topological dual spaces (V,7)" and (V, u)’
coincide algebraically. This topology is called Mackey topology. If (V,7) is a
metrizable locally convex vector space, then 7 is the Mackey topology.

In 1995 Chasco, Martin Peinador and Tarieladze asked the following question:
Given a locally quasi-convex group (G, 1), does there exist a finest locally quasi-
convex group topology u on G such that the character groups (G, 7)" and (G, )"
coincide?

In this talk we give examples of topological groups which

1) have a Mackey topology,

2) do not have a Mackey topology,
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and we characterize those abelian groups which have the property that every
metrizable locally quasi-convex group topology is Mackey (i.e. the finest compat-
ible locally quasi-convex group topology).

On dense subspaces of iterated function spaces

Dmitrii Baturov

Faculty of Physics and Mathematics, Turgenev Orel State University,
95 Komsomolskaya str., Orel 302026, Russia

E-mail: dbaturov@yandex.ru

In the paper |Baturov, Moscow Univ. Math. Bull., 1988]| it is proved that if
a Tychonoff space X has a point-countable network of cardinality N; and Y is a
normal dense subspace of Cp,(X), then Y is collectionwise normal. We will discuss
some analogous results for dense subspaces of Cj,,,(X).

On a game-theoretic version of Arhangel’skii’s inequality

Angelo Bella

Dipartimento di Matematica e Informatica, Universita degli Studi di Catania,
Piazza Universita 2, 95131 Catania, Italy

E-mail: bella@dmi.unict.it

We present a cardinal inequality for a space with points G, obtained with the
help of a long version of the Menger game. This result improves a similar one
established by Scheepers and Tall.

% This is a joint work with Leandro F. Aurichi (University of Sao Paolo, Brazil).
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Some constructions involving inverse limits

Aleksander Blaszczyk

Institute of Mathematics, University of Silesia,
ul. Bankowa 14, 40-007 Katowice, Poland

E-mail: ablaszcz@math.us.edu.pl

We will describe some inverse limit constructions of irreducible preimages of
zero-dimensional compact Hausdorff spaces with some additional properties.

On g-barrelled groups

Maria Jestis Chasco

Departamento di Fisica y Matematica Aplicada, Facultad di Ciencias,
Universidad de Navarra, 31008 Pamplona, Spain

FE-mail: mjchasco@unav.es

Barrelled spaces constitute a well behaved class of locally convex spaces. They
were introduced by Bourbaki in 1950 and its main feature is that they are exactly
the class of spaces which satisfy the Closed Graph Theorem. If X denotes a
locally convex space, X is barrelled if and only if every w(X*, X)-bounded subset
M C X* is equicontinuous.

If (G,7) denotes an abelian topological group, call G" := CHom(G,T) the
group of all the continuous characters of GG, and let 7, denote the topology of
pointwise convergence on G”.

An abelian topological group (G, 7) is g-barrelled if any 7,-compact subset
M C G is equicontinuous with respect to 7. The g-barrelled locally quasi-
convex groups constitute a subclass of groups for which there is valid an analogue
of the Mackey—Arens theorem stated in terms of groups. Every barrelled vector
space is a g-barrelled group.

An abelian topological group (G, 7) has the EAP,, if every 7,-continuous arc
of (G", 7,) is equicontinuous. Clearly, every g-barrelled group has the EAP,,.

We will present some results about these two important properties g-barrelled-
ness and EAP,, including its preservation through products, direct sums and
subgroups.

* This is a joint work with T. Borsich, X. Dominguez, and E. Martin-Peinador.
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Complete normal bases

Asylbek A. Chekeev, Tumar J. Kasymova

Balasagyn Kyrgyz National University, 547 Mikhail Frunze str., 720033 Bishkek, Kyrgyzstan,

Kyrgyz-Turkish Manas University,
56 Chyngyz Aitmatov ave., 720044 Bishkek, Kyrgyzstan (first author)

E-mail: asyl.ch.top@mail.ru, tumar2000@mail.ru

A compactum cX is a compactification of Tychonoff space X, if c: X — ¢X
is a homeomorphic embedding of X into ¢X and ¢(X) = ¢X. For compactifi-
cations ¢1 X and X assume co X > ¢ X, if there exists a continuous mapping
f: X — 1 X such that f ocy = ¢y. For a compactification cX, let A be a set
of all continuous functions on X continuously extended over ¢X. Then a family
F = {f40) : f € A} forms a normal base, and for the Wallman compacti-
fication w(X,F) it takes place w(X,F) > ¢X [3]. If w(X,F) = ¢X then the
compactification ¢X is called a §-like compactification |6]. For a f-like compact-
ification ¢X = w(X,F), a family F is a separating nest-generated intersection
ring (s.n.-g.i.r.) [5] and A is an inversion-closed algebra [2, 4, 7|. Points of -like
compactification cX are all ultrafilters of F. Part v(X, F) of -like compactifica-
tion cX is the set of all CIP (countable intersection property) ultrafilters of F in
induced topology from w(X, F) is called a Wallman realcompactification of X [5].

Let 7 > Ny be an arbitrary cardinal. An ultrafilter p of F is called 7-co-locally
finite (7-co-LF), if p’ C p whenever |p'| < 7and Cp' = {X\ Z: Z € p'} is locally
finite, then Np" # (). Denote as u. (X, F) the set of all T-co-LF ultrafilters of F
on X. Note that every 7-co-LF ultrafilter is CIP. Hence, u, (X, F) C v(X,F) C
cX = w(X,F) for any 7 > N;. Note that u. (X, F) = v(X,F) whenever 7 = .

A Tychonoff space X is called 7-topologically complete with respect to the
s.n.-g.i.r.-base F, if every 7-co-LF ultrafilter of F converges. A space X is dense
in u.(X,F), and p(X,F) in induced topology from w(X, F) is a 7-topological
completion of X with respect to the s.n.-g.i.r.-base F and u.(X,F) is topolog-
ically complete or Dieudonné complete for any 7 > Ny. For uniform spaces the
same tasks were solved in |7, §].
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A s.n.-g.ir.-base F on a space X is said to be T-complete if it coincides with
the family F = {Z N X : Z € Z(u-(X, F))} and whenever 7 = Xy, 7-complete
s.n.-g.i.r.-base coincides with complete base in sense of J. L. Blasco [1]. Since F
is the trace on X of all zero-sets in the Wallman compactification w(X, F), we
have F C F. An example of a complete base is Z (X).

In this talk, some properties of 7-complete s.n.-g.i.r.-bases are investigated. In
particular,

o If Fis asn-g.ir-base on a space X, then (X, F) = (X, F).
e A s.n.-g.ir.-base F on a space X is 7-complete if and only if the Cech-Stone

compactification S(u.(X,F)) coincides with the Wallman compactification
w(X, F).
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Conditions of finiteness, open mappings
and classes of spaces

Mitrofan M. Choban

Universitatea de Stat din Tiraspol, str. Iablocikin 5, Chisinau MD-2069, Moldova

E-mail: mmchoban@gmail.com
Any space is considered to be a Ty-space. We use some notions from |1, 2, 3, 4].

We study the following general question: Under which conditions the bounded
subsets of the given space are finite?
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A subset A of X is bounded if for every locally finite family v of open non-empty
subsets in X the set {U € v: U N A # ()} is finite.

A space X is called a feebly compact space if every locally finite family ~ of
open non-empty subsets in X is finite.

A space X is called an F'-space if X is completely regular and if disjoint
cozero-sets of X are contained in disjoint zero-sets.

A space X is called an F’-space if X is completely regular and clx UNecly V =0
for every two disjoint functionally open sets U and V of X.

A Maltsev polyalgebra is a space G with one ternary compact-valued up-
per semicontinuous set-valued operation mg: G®* — G such that mg(y, z,z) =
me(x,z,y) = {y} for all x,y € G. The mapping m¢ is called a Maltsev poly-
operation. If the mapping me is single-valued, then G is a Maltsev algebra.
A mapping p: A — B of a Maltsev polyalgebra A into a Maltsev polyalgebra B
is a homomorphism if p(ma(z,y, z)) C mp(e(x), p(y), p(z)) for all z,y, z € A.

Our aim is to present some results of the following kind.

Theorem 1. Let G be a topological Maltsev polyalgebra. Then G is a Ts-space.

Theorem 2. Let ¢o: A — B be a quotient homomorphism of a Maltsev
polyalgebra A onto a Maltsev polyalgebra B, and (G, m) be a topological Maltsev
polyalgebra. Then ¢ 1s an open homomorphism.

Theorem 3. Let G be a compact Maltsev polyalgebra. Then for any continu-
ous mapping f: G — 'Y onto an infinite Hausdor[f space Y there exist a compact
Maltsev polyalgebra B, a continuous open homomorphism ¢: G — B of G onto
B and a continuous mapping g: B — Y such that w(B) < w(Y) and f = go .

Corollary 4. Let G be a compact Maltsev polyalgebra. If G is an F'-space of
poitwise countable type, then G is a discrete space.

Corollary 5 (sce [4]). Let G be a compact space. A space G admits a structure
of a compacr polyalgebra if and only if G is a Dugundji space.

Theorem 6. For any non-empty Tychonoff space X there exists a compact
Maltsev polyalgebra G(X) such that:

o X is a subspace of G(X) and G(X) = H provided that X C H C G(X)
and H is a closed Maltsev subpolyalgebra of G(X);

e for any continuous mapping f: X — A into a compact Maltsev polyalgebra A
there ezists a continuous homomorphism ¢: G(X) — A such that f = p|X.

Theorem 7. If G is a Maltsev algebra and an F'-space, then any compact
subset of G s finite.
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Theorem 8. Let H be a closed subgroup of a topological group G and X =
G/H be the quotient space. If a topological space X is an F'-space, then any
bounded subset of X 1is finite.

Theorem 9. Let G be a pseudocompact Maltsev algebra. If G is an F-space,
then the space G 1is finite.

Some open questions will be formulated.
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P-points, Silver reals, and Isbell’s problem

David Chodounsky

Institute of Mathematics, Czech Academy of Sciences
Zitnd 25, 11567 Praha, Czech Republic

E-mail: chodounsky@math.cas.cz

P-ultrafilters are topological P-points in the space of non-principal ultrafilters
on natural numbers. S. Shelah proved that the existence of P-ultrafilters in not
provable in ZFC. T will present an overview of a recent alternative method of
demonstrating that fact. Applications of this method yield interesting results, it
is e.g. possible to get a model of with no P-points and the continuum arbitrarily
large, and to prove that certain inequality between cardinality between cardinal
invariants implies non-existence of P-points. I will also mention a possible connec-
tion with Isbell’s problem, which concerns the existence of Tukey non-equivalent
ultrafilters.

* These results are joint work with Osvaldo Guzmén and Jonathan Verner.
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Extensions of dualities and a new approach
to Fedorchuk’s duality

G. Dimov, E. Ivanova-Dimova, W. Tholen
Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski,”

5 James Bourchier blvd., Sofia 1164, Bulgaria (first two authors),

Department of Mathematics and Statistics, York University,
North York, Ontario M3J 1P3, Canada (third author)

E-mail: gdimov@fmi.uni-sofia.bg, elza@fmi.uni-sofia.bg, tholen@yorku.ca

We prove a general categorical theorem about extensions of dualities. Using it,
we obtain a new proof of Fedorchuk’s Duality Theorem [V.V. Fedorchuk, Sibirsk.
Mat. Z., 1973; English translation: Siberian Math. J., 1974].

% The first two authors were supported by the contract no. 80-10-107/19.04.2018 of the Sofia
University “St. Kliment Ohridski.”

Metrization of the space of weakly additive functionals

Gayratbay Djabbarov

Department of Mathematics, Nizami Tashkent State Pedagogical University,
27 Bunyodkor str., Tashkent 100070, Uzbekistan

E-mail: gayrat_77@bk.ru

Let X be a metric space. Denote by Cy(X) the algebra of all real-valued
bounded continuous functions on X. A functional v: Cy(X) — R is said to be

o weakly additive if v(p + cx) = v(p) + cv(lx) for all p € Cy(X) and ¢ € R;
e order-preserving if for any ¢, € Cp(X) with ¢ <1 we have v(p) < v(¥);
e normalized if v(1yx) = 1;

e positively homogeneous if v(ty) = tv(p) for all p € Cyp(X), t € R, t > 0.

For a metric space X we denote by OH (X)) the set of all weakly-additive, order-
preserving, normalized and positively homogeneous functionals on Cj(X). Set

Lipy(X) = {p: X = R, |p(2) — ()| < p(z,y), Y,y € X}
Let us define a Kantorovich-Rubinshtein metric on OH (X) by

pon(ii,v) = sup| (1 — v)()| : ¢ € Lipy (X)}, pov € OH(X). (1)
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We prove the following
Theorem. The function poy defined by (1) is a metric on OH(X).

Convergence methods in topology: Recent examples

Szymon Dolecki

Institut de Mathématiques, Université de Bourgogne,
9 ave. Alain Savary, BP 47870 21078 Dijon Cedex, France

E-mail: dolecki@u-bourgogne.fr

A convergence 7 is a topology whenever TT > 7, where T stands for the
topologizer, a concrete reflector in the category of convergences with continuous
maps as morphisms.

Several other (concrete) reflective subcategories are characterized analogously,
for example, pretopologies (Sp), paratopologies (S1), pseudotopologies (S), while
(concrete) coreflective subcategories are characterized by inequalities of another
type, for example, a convergence £ is of countable character if & > 1;&, where
I; is a certain concrete coreflector. Moreover, many fundamental subclasses of
topologies admit characterizations in terms of functorial inequalities of the type

T > JET, (1)

where J is a reflector and E is a coreflector. For instance, sequential topologies
T (1 > TIyT), Fréchet topologies T (1 > Soly7), strongly Fréchet topologies T
(7 > SiIi7), bisequential topologies T (1 > SIyT).

Continuity can be characterized in terms of final and initial convergences (a
map f: |£] — |7| is continuous if and only if f€ > 7, equivalently, £ > f77).
Classical variants of quotient maps are characterized by functorial inequalities of
the type

T > J(fE), (2)

where J is a reflector, for instance, T for (topological) quotient maps, So for hered-
itarily quotient maps, Sy for countably biquotient maps, S for biquotient maps.
These characterizations enables us to easily infer about preservation of properties
of the type (1) by maps of the type (2).

Variants of compactness can be characterized in terms of subcategories of con-
vergences; various types of perfect maps they can be described as inversely pre-
serving of certain types of compactness Finally, functorial inequalities applied
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to products of spaces and of functions, enable us to study various productivity
quests.

[ will illustrate these techniques on an example of a recent characterization of
productively sequential topologies [S. Dolecki, F. Mynard, Math. Slovaca, 2018].

Theorem 1. A topology is productively sequential if and only if its product
with each strongly sequential topology (equivalently, strongly Fréchet topology) is
sequential (equivalently, strongly sequential).

Theorem 2. A regular topology is productively sequential if and only if it s
sequential and bi-quasi-k.

Such topologies can be characterized by a functorial inequality.

Fixed points and coincidences of mappings
and mapping families in ordered sets

Tatiana N. Fomenko

Faculty of Computational Mathematics and Cybernetics,
M. V. Lomonosov Moscow State University,
Leninskie Gory, 1 building 52, Moscow 119991, Russia

E-mail: tn-fomenko@yandex.ru

The report is devoted to the fixed point and coincidence existence problems for
mappings of partially ordered sets. Recently, in the papers [D. A. Podoprikhin,
T.N. Fomenko, Doklady Math., 2016] and [T.N. Fomenko, D.A. Podoprikhin,
Topol. Appl., 2017] fixed point and coincidence existence theorems were presented
for mapping families of ordered sets. In the report we give some generalizations
of that results.

Given a metric space (X, d), one can construct an ordered set (X, <,) where
the order <, is defined as follows. For any x,y € X, wesay x <, y <= d(z,y) <
©(y) — p(x). We call this order Brondsted order. It was introduced in the paper
|A. Brendsted, Pacific J. Math., 1974|. Using such kind of the ordering a given
metric space, we discuss connections between the obtained recent results in or-
dered sets and some known metrical results concerning fixed point and coincidence
problems. For example, some generalizations of the well-known Caristi fixed point
theorem, to the case of a set-valued mapping and also to the case of coincidences
of mappings, are obtained. The results of the papers [T.N. Fomenko, Moscow
Univ. Math. Bull., 2017], [T.N. Fomenko, Doklady Math., 2017] and some further
developments of those are discussed in the talk.
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In addition, we touch upon the connection between the cascade search method
of finding zeros of functionals in a metric space (see, for example, the papers
|T.N. Fomenko, Topol. Appl., 2010], [T. N. Fomenko, Math. Notes, 2013]) on the
one hand, and some facts of the theory of partially ordered sets, on the other
hand.

An Antoine Necklace in R? all whose projections
are 1-dimensional

Olga Frolkina

Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University,
1 Leninskie Gory, Moscow 119991, Russia

E-mail: olga-frolkina@yandex.ru

L. Antoine constructed a Cantor set in R? whose projections coincide with
those of a regular hexagon [1, 9, p. 272; and fig. 2 on p. 273|.

By K. Borsuk [3], there exists a Cantor set in R? such that its projection
onto every hyperplane contains a (d — 1)-dimensional ball, or equivalently, has
dimension (d — 1).

J. Cobb [4] gives an example of a Cantor set in R? such that its projection
onto every 2-plane is 1-dimensional (for higher-dimensional extensions, see |5, 2]).
Cobb’s method is rather sophisticated; the resulting Cantor set is tame.

Interestingly, there exists an easily described (wild) Cantor set in R? all whose
projections are 1-dimensional. This is a well-known Antoine Necklace.

Theorem 1. There exists an Antoine Necklace A in R3 such that for each
2-dimensional plane TI C R3, we have dim p(A) = 1.

(Here prp: R® — II is the orthogonal projection onto a 2-dimensional plane
I CR3)

Bing-Whitehead Cantor sets [6] are wild Cantor sets of other type: in contrast
to Antoine necklaces, they have simply connected complement.

Theorem 2. There exists a Bing-Whitehead Cantor set B in R® such that
for each 2-dimensional plane I C R?, we have dim py(B) = 1.

Our method gives uncountably many pairwise ambiently non-equivalent An-
toine necklaces and Bing-Whitehead Cantor sets in R? all whose projections are
1-dimensional.
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On embedding of spaces into Tychonoft products
A. A. Gryzlov

Udmurt State University, 1 Universitetskaya str., Izhevsk 426034, Russia

E-mail: gryzlov@udsu.ru

The A.V. Archangel’skii theorem on the cardinality of a compact Hausdorft
first countable space caused a great increase in the study of cardinal characteristics
of spaces and methods of their proofs.

We consider problems of an embedding of a space X into Tychonoff products
of spaces, which has some properties of projections.

Using this embedding, we study properties of the space X as a subspace of
the product and prove the cardinal characteristics of X that follow from these
properties.

On the classification of spaces C,(X),
where X is a countable metric space

S. P. Gul’ko, D. I. Kargin, T. E. Khmyleva

Faculty of Mechanics and Mathematics, Tomsk State University,
36 Lenina ave., Tomsk 634050, Russia

E-mail: gulko®math.tsu.ru, foreshop@mail.ru, tex2150@yandex.ru

Our talk will be devoted to problems of uniform and linearly topological clas-
sification of spaces C},(X), where X is a countable metric space.
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When a totally bounded group topology
is the Bohr Topology of a LCA group

Salvador Hernandez Munos, F. Javier Trigos-Arrieta

Institut de Matematiques i Aplicacions de Castell6 (IMAC), Universitat Jaume I,
Av. de Vicent Sos Baynat, 12071 Castell6 de la Plana, Valencia, Spain (first author),

Department of Mathematics, California State University,
9001 Stockdale Highway, Bakersfield, CA 93311, USA (second author)

E-mail: hernande@uji.es, jtrigos@csub.edu

We look at the Bohr topology of maximally almost periodic groups (MAP, for
short). Among other results, we investigate when a totally bounded abelian groups
(G,w) is the Bohr reflection of a locally compact abelian group. Necessary and
sufficient conditions are established in terms of the inner properties of w. As an
application, an example of a MAP group (G, t) such that every closed, metrizable
subgroup N of bG with N NG = {0} preserves compactness but (G,t) does
not strongly respects compactness is given. Thereby, we respond to two open
questions by Comfort, Trigos-Arrieta, and Ta-Sun Wu.

Factorizations of maps on limits of inverse systems

Miroslav Husek

Faculty of Mathematics and Physics, Charles University,
Sokolovska 83, 18675 Praha, Czech Republic

Department of Mathematics, Faculty of Science, J. E. Purkyné University,
Ceské mladeze 8, 40096 Usti nad Labem, Czech Republic

E-mail: mhusek@karlin.mff.cuni.cz, miroslav.husekQ@ujep.cz

Let C be an epireflective subcategory of Hausdorff objects of topological or
uniform spaces generated by a class A. For a cardinal A\, we say that C has
property F) if every C-morphism into any object from A defined on a limit of an
inverse system in C factorizes via a limit of a subsystem of cardinality less than .
The problem of finding such A comes from investigation of locally presentable
categories and was considered in the paper [M. Husek, J. Rosicky, “Factorization
and local presentability in topological and uniform spaces,” submitted, 2018|.
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In topological spaces, the situation is easy for classes of compact spaces and
not easy for realcompact spaces (taking reals for the generator). For that and
similar cases, large cardinals are needed.

Theorem 1. The class of Hausdorff realcompact spaces has Fy for some A
if wi-strongly compact cardinals exist. For X\ one may take the least reqular
w1 -strongly compact cardinal.

The last result generalizes to Herrlich’s 7-compact spaces—one assumes the
existence of T-strongly compact cardinals. Similar results hold for some com-
plete proximity spaces and for Dieudonné complete spaces. Other classes will be
considered, too.

Existence of measurable cardinals is necessary for Theorem 1 to hold but we
do not know if the existence of w;-strongly compact cardinals is necessary. But
at least in some situations the existence of measurable cardinals is not enough.

Almost fully closed mappings and quasi-F-compacta

A. V. Ivanov

Institute of Applied Mathematical Research,
Karelian Research Centre, Russian Academy of Sciences,
11 Pushkinskaya str., Petrozavodsk 185910, Karelia, Russia

FE-mail: alvlivanov@krc.karelia.ru

We introduce the notions of an almost fully closed mapping and a quasi-F-
compactum (all spaces are Hausdorff compact), which generalize the concepts of
a fully closed mapping and a Fedorchuk compactum.

Definition 1. A continuous mapping f: X — Y is almost fully closed if for
any two disjoint closed subsets A, B C X |f(A) N f(B)| < wp.

Definition 2. A space X is called a quasi-F-compactum if it is the limit of
a continuous well-ordered inverse system S = {Xa,ﬂg s a, B < v} where Xj is

a point, all neighboring projections 7&*!

T are almost fully closed and all fibres
(m@*t1)~1(z) are metrizable. The smallest length ~ of such system S is called the

spectral height of X.

The composition of almost fully closed mappings of first countable compacta is
almost fully closed. All projections 7§ and limiting projections m, of the system
S above are almost fully closed if v < wy.

We obtained the following results.
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Theorem 1. Let Y be a quasi-F'-compactum of spectral height 3. Then, for
any uncountable metrizable compactum K, the product Y x K 1is not a quasi-F'-
compactum of a countable spectral height.

Theorem 2. The product of quasi-F-compacta of spectral height 3 is never a
quasi-F'-compactum of a countable spectral height.

Theorem 3. There exists a perfectly normal compactum X for which any
almost fully closed mapping to a metric compactum is constant.

Vietoris-type topologies on hyperspaces

Elza Ivanova-Dimova

Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski,”
5 James Bourchier blvd., Sofia 1164, Bulgaria

E-mail: elza@fmi.uni-sofia.bg

We study the (F,G)-hit-and-miss topology introduced by Clementino and
Tholen [M. M. Clementino, W. Tholen, Topology Proc., 1997|. We call it Vietoris-
type hypertopology (since under this name it was introduced independently in
|[E. Ivanova-Dimova, arXiv:1701.01181, 2017]). We show that the Vietoris-type
hypertopology is, in general, different from the Vietoris topology. Also, some of
the results of Michael [E. Michael, Trans. Amer. Math. Soc., 1951] about hyper-
spaces with Vietoris topology are extended to analogous results for hyperspaces
with Vietoris-type topology. We obtain, as well, some results about hyperspaces
with Vietoris-type topology which concern some problems analogous to those re-
garded by Schmidt [H.-J. Schmidt, Math. Nachr., 1981].

% The author was supported by the contract DN02/15/19.12.2016 “Space, Time and Modality:
Relational, Algebraic and Topological Models” with Bulgarian NSF.
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On the tightness of Gg-modifications

Istvan Juhasz

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Redltanoda u. 13-15, Budapest 1053, Hungary

E-mail: juhasz@renyi.hu

The Gs-modification X5 of X is generated by the G5 subsets of X. Bella and
Spadaro asked in [arXiv:1707.04871]: Is t(X;) < 24%) true for every (compact)
T5 space X7 We answered both questions:

Theorem 1. If X is a reqular Lindeldf space then t(Xs) < 20X,

In [Juhdsz, Soukup, Szentmiklossy, Topol. Appl., 1998] we proved the con-
sistency of “if X is a countably tight compactum then #(Xj) < w;” with the
continuum being arbitrarily large.

Problem 1. Is it consistent to have a countably tight compactum X for which
t(X(;) > wy?

Theorem 2. If there is a non-reflecting stationary set of w-limits in a reqular
cardinal k then there is a Ty Fréchet-Urysohn topology T on xk + 1 such that
t(T(g) = K.

Problem 2. s there in ZFC a countably tight space X with ¢(X5) > 2¢7?

Theorem 3. If A is a strongly compact cardinal then t(X) < X implies
t(Xs) < A for every topological space X .

Note that (i) if there is a non-reflecting stationary set of w-limits in x then
k is less than the first strongly compact cardinal A\y; (ii) modulo some large
cardinals, in some ZFC model )y exists and the cardinals x admitting a non-
reflecting stationary set of w-limits are cofinal in A\y. This means that Theorem 2
is, in some sense, sharp.

* This is a joint work with A. Dow, L. Soukup, Z. Szentmikléssy and W. Weiss.
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Fragmentability of spaces: a valuable alternative
for metrizability

Petar S. Kenderov

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
8 Acad. G. Bonchev str., Sofia 1113, Bulgaria

E-mail: kenderovp@cc.bas.bg

Metrizability provides a very convenient topological framework for many stud-
ies in analysis. However, there are many non-metrizable topological spaces which
are important for functional analysis. The most famous examples are the weak
topology of an infinite dimensional Banach space as well as the weak™ topology
of its dual. Similarly, the pointwise convergence topology in the space C'(T") of all
continuous functions in a non-countable compact space T' is also not metrizable.
As a way out, J. E. Jayne and C. A. Rogers introduced in |Acta Math., 155 (1985),
41-79] a more general notion which has some of the properties of metrizability and
is much more often to meet: the topological space X is said to be fragmentable
if there exists some metric d in it (not necessarily generating its topology) such
that for every non-empty set A of X and for every € > 0 there exists an open set
V such that V N A # () and the d-diameter of V' N A is less than or equal to €.

The goal of this talk is to overview some of the applications of fragmentability
and to present a generalization of this notion which is obtained when in the above
definition one considers not all non-empty subsets A of X but only the open
subsets of X. Such spaces X are called spaces with fragmentable open sets or,
simply, fos-spaces.

Theorem 1 (M. M. Choban, P.S. Kenderov and J. P. Revalski). Let X be a
reqular topological space. Then the following properties are equivalent:

(i) X is a fos-space;
(ii) there is a sequence {7V, }n>1 of families of disjoint nonempty open sets in
X such that:

(1) for every V41 € Yni1 there exists some V,, € v, such that V.1 C V,
(Yns1 18 a refinement of v, );

(2) for everyn > 1 the open set W, := | J{V,, : Vi, € v} is dense in X;

(3) if (Vi)n>1 is a sequence of sets such that V,, € =y, for everyn > 1 and

(Vi) is nested (i.e. Vyi1 CV, for each m > 1) then the intersection
N, Va is either empty or a singleton.
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(iii) X is the union of two disjoint sets X1 and Xs such that X is of the first
Baire category in X, and there exists a metrizable topology on Xo which
is coarser than the topology inherited from X (one of the two sets can be

empty).

If the metric d which fragments the open sets of X generates a topology which
is finer than the original topology of X, then the space X, from item (iii) is
metrizable.

Further, a topological game characterization of fos-spaces is given which allows
us to show that

Theorem 2. A compact topological space X is a fos-space if, and only if, it
contains a dense completely metrizable subset.

Global invariants of continuous paths for sinear similarity
groups in the two-dimensional FEuclidean space

Djavvat Khadjiev

Faculty of Mathematics, Mirzo Ulugbek National University of Uzbekistan,
4 University str., Tashkent 100174, Uzbekistan

Romanovsky Institute of Mathematics, Academy of Sciences of Uzbekistan,
81 Mirzo Ulugbek str., Tashkent 100041, Uzbekistan

Global G-invariants of continuous paths in the two-dimensional Euclidean
space Fs for the linear similarity group G = LSim(2) and the orientation-preserv-
ing linear similarity group G' = LSim™(2) are studied. Complete systems of global
G-invariants of continuous paths are obtained for groups G = LSim(2), LSim™(2).
Conditions of the global G-equivalence of continuous paths are given in terms of
complete systems of global G-invariants of continuous paths. General evident
form of a planar continuous path with given complete systems of G-invariants is
obtained. For given two planar continuous paths z(t) and y(¢) with common com-
plete system of G-invariants, evident forms of all transformations g € G, carrying
x(t) to y(t), are obtained.
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Some results in selection principles theory

Ljubisa D. R. Kocinac

Faculty of Sciences and Mathematics, University of Nis,
Visegradska 33, Nis 18000, Serbia

E-mail: 1kocinac@Ogmail.com

We discuss some known and some new results in selection principles theory. In
particular, we will point out influence of the contributions of A. V. Arhangel’skii
to our research in this theory. A few open problem will be also considered.

On some topological property of a space C,(X, S),
where .S is the Sorgenfrey line

Denis I. Korolev

Faculty of Mechanics and Mathematics, Tomsk State University,
36 Lenina ave., Tomsk 634050, Russia

E-mail: dracen6580gmail.com

We explore the question of the existence of the property of being an angelic
space for space Cp,(X,S), where S is the Sorgenfrey line.

Theorem 1. Let K be a compact space and S be a Sorgenfrey line, and
C(K,S) be endowed with the pointwise topology. Let A be a relatively countably
compact in Cp(K,S) and 1 be an element of the closure A of A in SK. Then
there is an x in Cy(K,S) and a sequence x,, in A such that x,(t) = x(t) = .

Theorem 2. Let K be a compact space, S be a Sorgenfrey line, and A be a
relatively countably compact subset in C,(K,S). Then the properties of relative
compactness and relative countable compactness for subsets of C,(K, S) coincide.

From these two theorems it follows that the space C,(K,S) is angelic for the
compactum K and the Sorgefrey line S.
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On the dimension of some semi-metric spaces

I. M. Leibo

Moscow Center for Continuous Mathematical Education,
11 Bolshoy Vlasyevsky per., Moscow 119002, Russia

E-mail: imleibo®mail.ru

In dimension theory, the concept of a network introduced by A.V. Arkhangel-
skii plays a large role as the properties of paracompact o-spaces [1].

A system p = {F,} of sets in a space X is called a network if, given any
point x € X and any neighborhood Ox of z, there exists an F,, € p for which
r e F, COx.

Definition 1 [2, 3]. We say that a closed network v = {F,} in a space Y is
an S-network if, given any closed set F' C Y and any its open neighborhood OF',

there exists a subsystem ~(F') of v such that the union of all elements of v(F),
e, Jy(F)isclosed in Y and F C [ Jv(F) C OF.

All topological spaces considered in this report are assumed, unless otherwise
stated, to be normal, Hausdorff, and finite-dimensional. We also assume that all
maps of spaces are continuous and all networks consist of closed sets.

Definition 2. A space X is semimetrizable if there exists a real-valued function
d on X x X such that (a) d(x,y) = d(y,z), (b) d(z,y) = 0 if and only if
r =y, and (c) a point p € X is in the closure of a subset B of X if and only if
inf{d(p,b) : b € B} =0 (i.e., d generates the topology of X). The function d is
called a semi-metric. A space X is 1-continuous semimetrizable if d is continuous
in one variable.

Theorem 1. Let X be a 1-continuous semimetrizable paracompact o-space,
let X have a o-closure-preserving S-network. Then the following conditions are
equivalent:

(a) dim X < n;

(b) Ind X < mn;

(c) X =UX;,i=0,1,2,...,n+1, where each set X; is G5 and dim X; < 0,
fori=1,2,....n+1;

(d) the space X is a <(n+1)-to-one image of a zero-dimensional semimetriz-
able paracompact o-space under a perfect map.

Theorem 2. Let a space X be a Nagata space (i.e., stratifiable and semi-
metrizable) and let the semi-metric in X be 1-continuous. Then the following
conditions are equivalent:
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(a) dim X < n;

(b) Ind X < n;

() X =UX;,i=0,1,2,...,n+1, where each set X; is G5 and dim X; < 0,
fore=1,2,...,n+1;

(d) the space X is a <(n+1)-to-one image of a zero-dimensional Nagata space

under a perfect map.

From Theorem 2 (d) we have:

Corollary. Fvery Nagata space with 1-continuous semi-metric has a o-clos-
ure-preserving S-network.
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On embedding of free abelian topological group
A(X @ X) into A(X)

Arkady Leiderman

Department of Mathematics, Ben-Gurion University of the Negev,
Beer Sheva, P.O.B. 653, Israel

E-mail: arkady@math.bgu.ac.il

X & X denotes the free sum of two copies of X. We consider the following
question: for which infinite metrizable compact spaces X the free abelian topolog-
ical group A(X @ X) isomorphically embeds into A(X). While for many natural
spaces X such an embedding exists, our main result shows that in general this is
not true.

Theorem 1. Let M be a Cook continuum. Then the free abelian topological
group A(M @ M) does not embed into A(M) as a topological subgroup.

Analogous statement is true also for the free boolean group B(X).

* This is a joint work with Mikotaj Krupski and Sidney Morris.
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On some topological properties
of the Hausdorft fuzzy metric spaces

Changqing Li

School of Mathematics and Statistics, Minnan Normal University,
Zhangzhou, Fujian 363000, China

E-mail: helen_smile03200163.com

Fuzzy metric, which was first introduced by George and Veeramani in 1994,
is one of the most important concepts in the theory of fuzzy topology. In order
to explore hyperspaces in given fuzzy metric spaces, Rodriguez-Lopez and Roma-
guera constructed the Hausdorff fuzzy metric on the family of nonempty compact
sets and discussed precompactness, completeness and completion of the Hausdorff
fuzzy metric spaces. In the talk, several properties of the Hausdorff fuzzy metric
spaces, such as F-boundedness, separability and connectedness are explored.

Minimal base for finite topological space
by matrix method

Yidong Lin, Jinjin Li, Liangxue Peng, Ziqin Feng

School of mathematics and statistics, Minnan Normal University,

Zhangzhou 363000, China

E-mail: jinjinli@mnnu.edu.cn

Topological base plays a foundational role in topology theory. However, few
works have been done to nd the base of topological spaces, which would make
us difficult to interpret the internal structure of topology spaces. To address
this issue, we in this paper study the problem of minimal base algorithm in finite
topological spaces based on matrix methods. Firstly, we represent a finite topology
space with a Boolean matrix. Then, the properties of minimal base of finite
topological spaces are investigated using the matrix. Thirdly, we claim that each
minimal base of finite topological spaces can be obtained by the minimal base
of subspace employing matrix operations. In the end, a Boolean matrix-based
algorithm for finding the minimal base is presented. Experiments are implemented
to show the new proposed method is effective for large-scale data.

38 Yidong Lin, Jinjin Li, Liangxue Peng, Zigin Feng



The kg-property of free Abelian topological groups
and products of sequential fans

Fucai Lin, Shou Lin, Chuan Liu

School of mathematics and statistics, Minnan Normal University,
Zhangzhou 363000, China

E-mail: 1infucai@mnnu.edu.cn

A space X is called a kg-space, if X is Tychonoff and the necessary and
sufficient condition for a real-valued function f on X to be continuous is that the
restriction of f to each compact subset is continuous. In this paper, we discuss the
kgr-property of products of sequential fans and free Abelian topological groups by
applying the x-fan introduced by Banakh. In particular, we prove the following
two results:

(1) The space S,,, X S, is not a kg-space.

(2) The space S, x S, is a kg-space if and only if S, x S, is a k-space.

These results generalize some well-known results on sequential fans. Further-
more, we generalize some results of Yamada on the free Abelian topological groups

by applying the above results. Finally, we pose some open questions about the
kr-spaces.

Fifty years of “Mappings and Spaces”
Shou Lin

Department of Mathematics, Ningde Normal University,
Ningde, Fujian 352100, China

E-mail: shoulin600163.com

The famous survey “Mappings and Spaces” written by A.V. Arhangel’skil in
1966 still gives a powerful driving force to general topology, especially in the theory
of generalized metric spaces. This talk provides an overview on its historical sig-
nificance and practical function for general topology in fifty years, lists some open
problems in the survey, and introduces some influence of recent Arhangel’skii’s
work for the development of general topology in China.

*  This study is supported by the NSFC (No. 11471153).

Fucai Lin, Shou Lin, Chuan Liu 39



The w-resolvability at a point of pseudocompact spaces

Anton Lipin

Institute of Science and Mathematics, Ural Federal University,
19 Mira str., Ekaterinburg 620002, Russia

E-mail: tony.lipin@yandex.ru

The notion of the resolvability at a point was introduced by E.G. Pytkeev
in 1983.

Definition 1. Let k be any cardinal number. Topological space (X, 7) is
called k-resolvable at a point x € X if X contains  disjoint spaces A, such that
x is a limit point for all A,.

Space (X, 7) is called resolvable at a point if it is 2-resolvable at this point.

Space (X, 7) is called mazimally resolvable at a point z if it is Az, X)-
resolvable at the x, where A(z, X) = min{|U| : « € U € 7} is a dispersive
character of space X at the point z.

It is obvious that a topological space can be resolvable only at a non-isolated
point. Pytkeev found a big class of spaces in which non-isolation of a point is a
sufficient condition for maximal resolvability at the point.

Examples of irresolvable at any point spaces without isolated points were con-
structed by A. G. Yel’kin in 1979. Actually, he constructed maximal regular spaces
and got the irresolvability at all points like a by-effect.

We establish the following fact.

Theorem 1. Assume X s a reqular topological space and every discrete family
of open sets in X 1is finite. Then X is w-resolvable at any non-isolated point.

And as a consequence we establish the following statement.

Theorem 2. Any pseudocompact topological space is w-resolvable at every
non-isolated point.
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Notes on free topological vector spaces

Chuan Liu, Fucai Lin
Department of Mathematics, Ohio University-Zanesville,
1425 Newark Road, Zanesville, OH43701, USA (first author),

School of Mathematics and Statistics, Minnan Normal University,
Zhangzhou 363000, China (second author)

E-maail: 1iucl@ohio.edu, linfucai2008@aliyun.com

We will discuss tightness, k-space property and Fréchet-Urysohn property of
subspaces of a free topological vector space.

Definition 1. The free topological vector space V(X) over a Tychonoff
space X is a pair consisting of a topological vector space V(X) and a contin-
uous map i = ix: X — V(X) such that every continuous mapping f from X to
a topological vector space (tvs) E gives rise to a unique continuous linear operator

f:V(X) = E with f = foi.
For a space X and an arbitrary n € N, we denote by sp,,(X) the following
subset of V(X))

spp(X) ={ a1 + -+ X\t N € [-nyn],x; € Xi=1,...,n}.
Then V(X) = U, ey 5P, (X) and each sp,(X) is closed in V(X).

Theorem 1. The following are equivalent for a metrizable space X :
(1) sp,,(X) is first-countable for eachn € N,

(2) sp,(X) is Fréchet-Urysohn for each n € N,

(3) spy(X) is Fréchet—Urysohn,

(4) X is compact.

Theorem 2. The following are equivalent for space X :

(1) V(X) is k-Fréchet-Urysohn,

(2) V(X) is locally compact,

(3) V(X) s a g-space,

(4) X is finite.

Theorem 3. Let X be a Lasnev space, then V(X)) is a k-space if and only if
spo(X) is a k-space if and only if X is a k,-space.

Theorem 4. Let X be a Lasnev space, then V(X)) is of countable tightness if
and only if spy(X) is of countable tightness and if and only if X is separable.
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Problem. Let Y be a closed subset of a metrizable X, is V(Y') homeomorphic
to V(Y, X)?

2-homeomorphisms and non-nonhomogeneity level

Yu. A. Maksyuta

Faculty of Mathematics, Moscow Pedagogical State University,
14 Krasnoprudnaya str., Moscow 107140, Russia

E-mail: yua.maksyuta@math.mpgu.edu

We will discuss 2-homeomorphisms presented in the paper [A. V. Arhangel’skii,
Ju. A. Maksyuta, Topol. Appl., 2018] and how similar technique may be applied
to exploring topological space properties.

Definition 1. Topological spaces X and Y are called 2-homeomorphic if there
exist homeomorphic closed subspaces of X and Y such that their complements
are also homeomorphic.

Definition 2. A space Y is called conjugate to a space X if X is homeomorphic
to a closed subspace of Y, and Y is homeomorphic to an open subspace of X.

Theorem 1. If a space Y s conjugate to a space X, then the spaces X andY
are 2-homeomorphic.

Example 1. Consider N, the discrete space of natural numbers; and S =
{1} U{0}, a usual convergent sequence (including the limit point). N and S are
2-homeomorphic; N and N x S are 2-homeomorphic too, but S and N x S are
not 2-homeomorphic.

Example 2. The condition in Theorem 1 is sufficient for two spaces to be
2-homeomorphic but is not necessary even in class of compact spaces: the sphere
in 3-dimensional Euclidean space and the projective plane are 2-homeomorphic,
but no one of them is conjugate to another.

Definition 3. For two spaces X and Y, their nonsimilarity level is the number
nsim(X, YY) such that:

1) nsim(X,Y) =0if X and Y are homeomorphic;

2) nsim(X,Y) < n if there are nonempty homeomorphic open subspaces
X; € X and Y7 C Y and nsim(X \ X1,Y \ Y1) < n — 1, otherwise
nsim(X,Y) = oo;

3) nsim(X,Y) = n if nsim(X,Y) < n and nsim(X,Y) € n — 1.
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Definition 4. For a space X, its nonhomogeneity level is the number
nhom(X) such that:

1) nhom(X) = 0 if X is homogeneous;

2) nhom(X) < n if there is nonempty a homogeneous open subspace X7 C X
and nhom (X \ X7) < n — 1, otherwise nhom(X) = oo;

3) nhom(X) = n if nhom(X) < n and nhom(X) £ n — 1.

Example 3. Let X be the union of a closed circle on Euclidean plane and an
isolated point. Then nhom(X) = 2, nsim(X,E?) = 1 while nhom(E?) = 0.

On factorization properties of function spaces

Witold Marciszewski

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,
ul. Banacha 2, 02-097 Warszawa, Poland

E-mail: wmarciszOmimuw.edu.pl

For a Tychonoff space X, by C,(X) we denote the space of all continuous
real-valued functions on X, equipped with the topology of pointwise convergence.
One of the important questions (due to A.V. Arhangel’skii), stimulating the the-
ory of Cp-spaces for many years and leading to interesting results in this theory,
is the problem whether the space C,(X) is (linearly, uniformly) homeomorphic
to its own square C,(X) x Cp(X), provided X is an infinite compact or metriz-
able space. In my talk I will recall several old results and present some recent
developments concerning these type of questions. In particular, I will show a
metrizable counterexample to this problem for homeomorphisms (a joint result
with M. Krupski). I will also show that, for every infinite zero-dimensional Polish
space X, the spaces Cp(X) and C,(X) x Cy(X) are uniformly homeomorphic
(a joint result with R. Gérak and M. Krupski).
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R-factorizable G-spaces

Evgeny Martyanov

Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University,
1 Leninskie Gory, Moscow 119991, Russia

E-mail: binom00@yandex.ru

Definition. A G-space (G, X, a) is said to be R-factorizable in the category
G-Tych, if for every continuous real-valued function f on X there exist a separable
metrizable G-Tychonoff space (K, Y, ), an equivariant map (m, h): (G, X, a) —
(K,Y, ) and a real-valued function k on Y such that f = ko h.

We introduce the notion of a G-space R-factorizable in the category G-Tych
and give its characterization. The R-factorizability of a C-embedded dense
subgroup H of a group G is equivalent to the R-factorizability of the G-space
(H,G, a), where « is the restriction of the action of G on itself by left translations
to H x G. From this it follows that Raikov and Dieudonné completions of an
R-factorizable group are R-factorizable in the category G-Tych. We prove that
R-factorizability of G-spaces holds in the case of a d-open equivariant image, as
a consequence we show that R-factorizability of topological groups is preserved
by d-open homomorphisms.

F,-mappings between perfectly paracompact spaces

Sergey Medvedev

Institute of Natural Sciences, South Ural State University,
76 Lenina ave., Chelyabinsk 454080, Russia

E-mail: medvedevsv@susu.ru

Definition. A mapping f: X — Y is called an F,,-mapping if f maps F,-sets
in X to F,-sets in Y and f~! maps F,-sets in Y to F,-sets in X.

A detailed study of F,-mappings between absolute Suslin metric spaces was
initiated by J.E. Jayne, C.A. Rogers and R.W. Hansell. In particular, they
showed that an F,-mapping is in fact piecewise closed under some assumptions.
Such investigations were continued by P. Holicky and J. Spurny.

We will discuss how those results can be generalized to Suslin Fj-subsets of
perfectly paracompact spaces. We will also analyse the relationship between
F,-mappings and F,-measurable mappings.
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Some aspects of dimension theory for topological groups

Jan van Mill

Korteweg — de Vries Institute for Mathematics, University of Amsterdam,
Science Park 105-107, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands

FE-masl: j.vanMill@uva.nl

We discuss dimension theory in the class of all topological groups. For lo-
cally compact topological groups there are many classical results in the literature.
Dimension theory for non-locally compact topological groups is mysterious. It is
for example unknown whether every connected (hence at least 1-dimensional)
Polish group contains a homeomorphic copy of [0, 1]. And it is unknown whether
there is a homogeneous metrizable compact space the homeomorphism group of
which is 2-dimensional. Other classical open problems are the following ones.
Let G be a topological group with a countable network. Does it follow that
dim G = ind G = Ind G? The same question if X is a compact coset space. We
also do not know whether the inequality dim(G x H) < dim G + dim H holds for
arbitrary topological groups G' and H which are subgroups of o-compact topo-
logical groups. The aim of this talk is to discuss such and related problems.

* This is a joint work with A.V. Arhangel’skii.

The local density and the local weak density
of superextension and NN¥-kernel of a topological space

F. G. Mukhamadiev

Faculty of Mathematics, Mirzo Ulugbek National University of Uzbekistan,
4 University str., Tashkent 100174, Uzbekistan

E-mail: farhod87170mail.ru

We say that a topological space X is locally T7-dense at a point x € X if 7 is
the smallest cardinal number such that x has a 7-dense neighborhood in X. The
local density at a point x is denoted by ld(x).

The local density of a space X is defined as the supremum of all numbers ld(x)
for x € X; this cardinal number is denoted by Id(X).

A topological space is locally weakly T-dense at a point x € X if 7 is the
smallest cardinal number such that x has a neighborhood of weak density 7 in X.
The weak density at a point x is denoted by lwd(z).
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A topological space X is called locally weakly T-dense if it is weakly 7-dense
at each point x € X.
The local weak density of a topological space X is defined in the following way:

lwd (X) =sup{lwd (x) :z € X}.

A system & = {F, : a € A} of closed subsets of a space X is called linked if
any two elements from ¢ intersect [1].

A.V. Ivanov defined the space NX of complete linked systems (CLS) of a
space X in the following way:

Definition 1. A linked system p of closed subsets of a compact X is called a
complete linked system (a CLS) if, for any closed set of X, the condition

“Any neighborhood OF of the set F' consists of a set ® € p”

implies F' € pu [2].

The set NX of all complete linked systems of a compactum X is called the
space NX of CLS of X. This space is equipped with the topology, the open base
of which consists of all sets of the form

E:O<U17U27"'7U’n)<‘/17‘/27"'7‘/8>
={p e NX :forany i =1,2,...,n there exists F; € u
such that F; C U;, and FNV, # @ forany j=1,2,...,s, F € u},

where Uy, Us, ..., U,, V1, Vs, ...,V are nonempty open in X sets [2].

Definition 2. Let X be a compact space, ¢ be a cardinal function and 7 be
an arbitrary cardinal number. We call the N¥-kernel of a topological space X
the space

NYX ={ue NX:3F € u: p(F) <71}

Theorem 1. Let X be an infinity compact space and ¢ = d, 7 = Ny. Then:
1) ldA(N?X) # ld(AX);
2) lwd(N?X) # lwd(AX).

References
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The spaces C\(X): decomposition into a countable union
of bounded subspaces

Alexander V. Osipov

Krasovskii Institute of Mathematics and Mechanics, Russian Academy of Sciences,
16 S. Kovalevskaya str., Ekaterinburg 620990, Russia,

Ural State University of Economics, 62 the 8th of March str., Ekaterinburg 620144, Russia

E-mail: oab@list.ru

For a Tychonoff space X and a family A of subsets of X, we denote by C)(X)
the space of all real-valued continuous functions on X with the set-open topology.
In particular, if A consists of all finite subsets of X then C)(X) = C,(X).

A space X is said to be Menger |2| if for every sequence {U,, : n € w} of open
covers of X, there are finite subfamilies V,, C U,, such that [ J{V, : n € w} is a
cover of X.

In [1], A.V. Arhangel’skii proved that C,(X) is Menger, if and only if X is
finite. We will discuss how one can generalize this result for C(X).

Theorem. For a Tychonoff space X and a w-network A of X, the following
statements are equivalent:

1) C\(X) is o-compact;

C\(X) is Alster;

C\(X) is projectively o-compact and Lindeldf;
(X) is Hurewicz;

C\(X) is Menger;

X is a pseudocompact, D(X) is a dense C*-embedded set in X and the

family X consists of all finite subsets of D(X), where D(X) is the set of
isolated points of X .

References
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Soviet Math. Doklady, 33 (1986), 396-399.
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Roughness on topological vector spaces

Cenap Ozel, Shahad Almohammadi

Department of Mathematics, King Abdulaziz University,
P.O. Box 80200, Jeddah 21589, Saudi Arabia

E-mail: cenap.ozel@gmail.com

We will define rough vector spaces and topological rough vector spaces. Then
we investigate properties of these topological algebraic structures, and also inves-
tigate rough convexity.

The property of having a Luzin m-base
is not preserved by products

Mikhail Patrakeev

Krasovskii Institute of Mathematics and Mechanics, Russian Academy of Sciences,
16 S. Kovalevskaya str., Ekaterinburg 620990, Russia

E-mail: patrakeev@mail.ru

Recall that a Luzin scheme on a set X is a family (Ls)se<w, of subsets of X
such that

> Ly D Ly, forall s € <“w, n € w;
> LN Lg~y, =@ forall s € <“wand n #m € w,

where ““w is the set of finite sequences of natural numbers and

(805 -y Sp—1) 1 :=(S0y...,Sk_1,MN).

A Luzin scheme on X is strict iff
> L<> = X;
> L, =/

> (e, Lan 1s a singleton for all a € “w,

new Ls—n forall s € ~“w;

where () is the empty sequence, “w is the set of infinite sequences of natural
numbers, and a[n is the restriction of a to its first n arguments. A Luzin scheme
on X is open iff each L, is an open subset of X.
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Definition. A Luzin mw-base for a space X is an open strict Luzin scheme
on X such that for any point p € X and any its neighbourhood O(p), there are
s € ““wand k € w so that p € Ly and J,,5; Ls~n € O(p).

The Baire space w® and the Sorgenfrey line S have a Luzin 7-base [2]. All at
most countable powers of & and all at most countable powers of the irrational
Sorgenfrey line have a Luzin m-base [4]. If a space X has a Luzin m-base, then the
products X x w*, X x &, and X x 8 have a Luzin w-base [4], and also X \ F’
has a Luzin m-base whenever F' is o-compact |3] (but even a dense open subset
of X can be without a Luzin 7-base).

If a space X has a Luzin w-base, then it can be mapped onto the Baire space
w“ by a continuous one-to-one map [2| and also X can be mapped onto w* by a
continuous open map [2| (hence X can be mapped by a continuous open map onto
an arbitrary Polish space, see [1]). If a space X has a Luzin 7-base, then it has a
countable m-base and a countable pseudobase (both with clopen members); and
also X is a Choquet space (but it can be not strong Choquet even in separable
metrizable case). For each A C w¥, there exists a separable metrizable space with
a Luzin m-base that contains a closed subspace homeomorphic to A.

Theorem. There exist two spaces with Luzin m-bases whose product has no
Luzin m-base.

References
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g-equivalent not t-equivalent spaces

Oleg Pavlov

Faculty of Economics, Peoples’ Friendship University (RUDN),
6 Miklukho-Maklaya str., Moscow 117198, Russia

E-mail: matematika.atiso@gmail.com

Spaces X and Y are called g-equivalent if there is a bijection f: C)(X) —
C,(Y) such that both maps f and f~! are continuous when restricted to compact
subspaces of C,(X) and C,(Y') respectively.

We present examples of spaces which are g-equivalent but not t-equivalent,
thus answering a question of A.V. Arhangelskii.

Subgroups of products of certain paratopological
(semitopological) groups

Liang-Xue Peng, Ming-Yue Guo

College of Applied Science, Beijing University of Technology,
Beijing 100124, China

E-mail: pengliangxue@bjut.edu.cn, guomingyue@emails.bjut.edu.cn

In the first part of this report, we give some sufficient conditions under which
a paratopological group is topologically isomorphic to a subgroup of a product
of strongly metrizable paratopological groups. In the second part of this report,
we show that a regular (Hausdorff, T7) semitopological group G admits a homeo-
morphic embedding as a subgroup into a product of regular (Hausdorff, 77) first-
countable semitopological groups which are o-spaces if and only if G is locally
w-good, w-balanced, Ir(G) < w (Hs(G) < w, Sm(G) < w) and with the property
that for every open neighborhood U of the identity e of G the cover {zU : x € G}
has a basic refinement F which is o-discrete with respect to a countable family
V of open neighborhoods of e. In the last part of this report, we give an internal

characterization of projectively 7T; second-countable semitopological groups, for
1 =0,1,2.

* Research supported by the National Natural Science Foundation of China (Grant No.
11771029) and by Beijing Natural Science Foundation (Grant No. 1162001).
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Variational principles in optimization
and topological games

J. P. Revalski
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FE-mail: revalski@math.bas.bg

In this talk we will present relations between the validity of certain variational
principles in optimization and existence of winning strategies in some topological
games played in the underlying space. A typical variational principle in opti-
mization has the following setting: given a bounded from below (lower semi-)
continuous proper function f: X — R defined in a completely regular topological
space X, we are looking for conditions under which we can perturb f by enough

J. P. Revalski 51



rich (“rich” means big from topological point of view) set of continuous bounded
functions g defined in X such that the perturbation f + ¢ attains its minimum
in X (or even stronger, is well-posed). It has turned out that, in order to obtain
such kind of principles, the space X must admit a winning strategy for one of
the players in certain type of topological games played in X. Relations between
the validity of such variational principles and other fundamental properties of
topological spaces, like fragmentability will be presented as well.

% This is a joint work with M. M. Choban and P.S. Kenderov.

Some cardinal properties of functors of finite degree

R. B. Beshimov, D. T. Safarova

Faculty of Mathematics, Mirzo Ulugbek National University of Uzbekistan,
4 University str., Tashkent 100174, Uzbekistan

E-mail: rbeshimov@mail.ru, safarova.dilnora87@mail.ru

In the paper, hereditary cardinal-valued properties of normal functors in the
category of compact spaces are investigated.

Theorem 1. Let X be an infinite compactum such that C, (X) is a Lindeldf
Y-space, and F,: Comp — Comp be a normal functor of degree n. Then the
following cardinal functions (for their definitions, see [2]|) are preserved by F,
applied to X :

1) hereditary cellularity, he (F, (X)) = he (X);

2) hereditary density, hd (F, (X)) = hd (X);

3) hereditary m-weight, htw (F, (X)) = hrw (X);

4) hereditary Shanin number, hsh (F, (X)) = hsh (X);

) spread, s (F, (X)) = s(X).

Recall that Corson compacta [1, 2| are compact subsets of a X-product of sep-

arable metrizable spaces (or, what is the same, compact subsets of the ¥-product
of segments).

Theorem 2. Let X be an infinite Corson compactum such that C, (C, (X))
is a Lindelof X-space, and F,,: Comp — Comp be a normal functor. Then F),
being applied to X preserves the same five cardinal functions.

A topological space X is called a Dante space [3], if for any infinite cardi-
nal number 7 there exists a dense subspace X’ C X which is simultaneously
T-monolithic in itself and 7-suppressed by the space X.
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Theorem 3. For any infinite Dante compact space X, an arbitrary normal
functor F,,: Comp — Comp applied to X preserves the cardinal functions listed
in Theorem 1, and also character and tightness.
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The Menger property of C,(X,2) and related matters

Masami Sakai

Department of Mathematics and Physics, Faculty of Science, Kanagawa University,
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E-mail: sakaim01@kanagawa-u.ac. jp

A space X is said to be Menger if for any sequence {U,, : n € w} of open covers
of X, there exist finite V,, C U, (n € w) such that (J{V, : n € w} is a cover of
X. A.V. Arhangel’skii proved that C,(X) is Menger if and only if X is finite, in
“Hurewicz spaces, analytic sets and fan tightness of function spaces” [Soviet Math.
Doklady, 33 (1986), 396-399|. For a zero-dimensional space X, let C,(X,2) be
the space of all {0, 1}-valued continuous functions with the topology of pointwise
convergence. Even if Cy(X,2) is Menger, X need not be finite. Indeed, if a
space X is discrete, then C,(X,2) is compact (so, Menger). Bernal-Santos and
Tamariz-Mascaria gave several results when C, (X, 2) is Menger, in “The Menger
property on C,(X,2)” |Topol. Appl., 183 (2015), 110-126]. In this talk, we give
some improvements of them.
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Quotients of topological groups

Ivan Sanchez

Departamento de Matemaéticas, Universidad Auténoma Metropolitana,
Av. San Rafael Atlixco 186, C.P. 09340 Iztapalapa, México D.F., Mexico
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We show that there exists a closed subgroup H of a topological group G such
that G/H is a first-countable compact space, but G/H is not submetrizable. On
the other hand, if H is a closed neutral subgroup of a topological group GG such that
G/ H is first-countable, then G/H is metrizable. This result is a generalization
of the Birkhoff-Kakutani theorem. Also, if H is a closed neutral subgroup of a
topological group G such that G/H has countable pseudocharacter, then G/H
is submetrizable. We study under which conditions the quotient space G/H is
submetrizable, where H is a closed subgroup of a paratopological group G.

* This is a joint work with Manuel Ferndndez and Mikhail Tkachenko.

Idempotent ultrafilters are not selective

Denis I. Saveliev

Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences,
Bolshoy Karetny per., 19 building 1, Moscow 127051, Russia

E-mail: d.1i.saveliev@gmail.com

We show that in algebras with sufficiently cancellative operations, their Cech—
Stone compactifications cannot have idempotent ultrafilters that are selective.
This generalizes previous observations by Hindman and Protasov on groups and
countably complete ultrafilters to wider classes of algebras and ultrafilters.
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Inner points and exact Milyutin maps

Pavel V. Semenov
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The famous convex-valued Michael’s theorem on selections states that an LSC
mapping F' with a paracompact domain X, Banach (Fréchet) range space Y
and with non-empty convex closed values admits a single-valued continuous selec-
tion f. Much less well-known theorem (Theorem 3.1") of Michael states that the
closedness of values F'(x) can sometimes be weakened with simultaneous strength-
ening of information on a selection. Namely, for a completely normal X, sepa-
rable Y, a single-valued continuous selection exists whenever each value F'(x)
contains all inner points of its own closure.

As for the notion of inner point x of a convex set C', there are various (in the
infinite-dimensional case) approaches, but here it means that = does not belong
to any face (= to a proper closed convex extreme set) of C'.

Lemma. For the space of all probability measures P(M) on a Polish space M
endowed with the weak convergency topology, the subset

Pexact(M) = {p € P(M) : supp(u) = M}

of exact measures contains all inner points of P(M) = clos(Pexact(M)).
So, by applying the above selection theorem one can obtain

Proposition. For each LSC mapping G with a completely normal domain X,
Polish range space M and with non-empty closed values, there is a continuous
mapping E: X — P(M) such that for every x € X the probability measure E(x)
is ezact on G(z), supp(E(x)) = G(z).

Earlier, the statement was proved for the case G = ¢~! where ¢ is an open
surjection between Polish spaces.
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For a topological space X, the Banach-Mazur game on X is played between
two players. At round 1, Player A selects a non-empty open subset A; of X,
and Player B responds with choosing a non-empty open subset Bj inside of Aj.
At round 2, Player A selects a non-empty open subset Ay C Bj, and Player B
responds by choosing a non-empty open subset By C As. The game continues to
infinity producing a decreasing sequence A; O By 2 Ay DO By O ... of non-empty
open subsets of X. Player B wins if (), .y An = [,eny Bn # 0; otherwise Player A
wins.

A topological space X is called weakly a-favourable if Player B has a winning
strategy in the Banach-Mazur game on X.

We prove the following factorization theorem for weak a-favourability.

Theorem 1. Let h: X — Z be a continuous map from a Tychonoff weakly
a-favourable space X to a separable metric space Z. Then there exist a weakly

a-favourable separable metric space Y and two continuous maps g: X — Y,
f:Y = Z such that h= fog and Y = g(X).

Since a weakly a-favourable metric space contains a dense completely metriz-
able subspace, this theorem implies similar factorization theorems for many other
completeness-type properties (like Oxtoby completeness and Todd completeness,
for example).

Definition 2. We say that a topological group X is Polish factorizable pro-
vided that for every continuous homomorphism h: X — Z from X to a separable

metric group Z, there exist a Polish group Y and continuous homomorphisms
g: X =Y, f: Y = Zsuch that h= fogand Y = g(X).

Recall that a topological group G is called w-bounded (precompact) provided
that for every open neighbourhood U of the identity of G one can find an at most
countable (respectively, finite) set S such that G = SU.

Theorem 3. An w-bounded weakly a-favourable Hausdorff group is Polish
factorizable.

From this result we obtain a new characterization of pseudocompactness in
groups.
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Corollary 4. A Hausdorff topological group is pseudocompact if and only if
it is both precompact and weakly a-favourable.

This corollary implies an earlier result by the authors that a weakly pseudocom-
pact precompact Hausdorff group is pseudocompact, and gives a strong positive
answer to Problem 7.5 from [S. Garcia-Ferreira, R. Rojas-Herndndez, A. Tamariz-
Mascaria, “Completeness type properties on C,,(X,Y") spaces,” Topol. Appl., 219
(2017), 90-110).

Theorem 5. Let G be a dense subgroup in the product H = [],;
separable metric groups H;. Then the following conditions are equivalent:

Hi Of

(1) G is weakly a-favourable;

(2) G is Telgdrsky complete;

(3) G is strongly Oxtoby complete;
(4)

4) all groups H; are Polishable and 7;(G) = [],c; H; for every at most count-
able subset J of I, where my: H — [[,; H; is the projection.

Our results give a positive answer to Problem 7.6 from the paper cited above
for the class of separable metric groups and precompact groups.

*  This is a joint work with Alejandro Dorantes-Aldama (Mexico).

Duality in topological and convergence groups

Pranav Sharma

Department of Mathematics, Lovely Professional University,
Phagwara 144411, Punjab, India.

E-mail: pranav158510@gmail.com

Pontryagin’s duality theorem is one of the theorems of analysis which makes
sense beyond the assumption of local compactness, and the subject is developing
as a tool for the structural dismemberment of topological and convergence groups
which are not necessarily locally compact. We make an attempt to present the
state of the art in the Pontryagin duality theory of abelian groups with limit re-
lated structures and to point out the research issue in this growing field. Through-
out, an attempt is made to present the influence of functional analysis on the
development of the subject.
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On homeomorphisms of zero-dimensional compacta

Evgeny Shchepin
Steklov Institute of Mathematics, Russian Academy of Sciences,
8 Gubkina str., Moscow 119991, Russia

E-mail: scepin@mi.ras.ru

The problem considered concerns extensions of homeomorphisms of 0-dimen-
sional compacta. The following theorem is proved:

Theorem. Let D™ be the Cantor discontinuum, Y and Y’ be a pair of home-
omorphic to each other closed subsets of DY. A homeomorphism h: Y — Y’
can be extended to an autohomeomorphism h': DY — DY if and only if for any
y €Y the following two conditions are equivalent:

1) the point y belongs to interior of Y;
2) the point h(y) belongs to the interior of Y.
As a corollary, one obtains that every homeomorphism between closed, nowhere

dense subsets of the Cantor discontinuum can be extended over the whole discon-
tinuum.

Arrow ultrafilters and topological groups

Olga Sipacheva

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University,
1 Leninskie Gory, Moscow 119991, Russia

E-mail: o-sipa@yandex.ru

A relationship between the existence of k-arrow ultrafilters and topological
groups with certain properties is discussed. New properties of k-arrow ultrafilters
are determined.
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Cardinal invariants for the Gy topology

Santi Spadaro

Dipartimento di Matematica e Informatica, Universita degli Studi di Catania,
via le Andrea Doria 6, 95125 Catania, Italy

E-mail: santidspadaro@gmail.com

Given a topological space X, we indicate with X the topology on the underly-
ing set of X which is generated by the G subsets of X. We will survey joint work
with Bella and Szeptycki regarding cardinal invariants for the G topology. In
particular, we will give bounds for the Lindel6f number, the weak Lindelof num-
ber and the spread of X in terms of their value on X, and construct examples
to show the sharpness of our bounds, one of which solves a 1969 question due
to A.V. Arhangel’skii. We will finally show how to apply our bounds to obtain
cardinal estimates for homogeneous compacta.

The Rudin—Keisler ordering of P-points under b = ¢

Andrzej Starosolski

Faculty of Applied Mathematics, Silesian University of Technology,
ul. Akademicka 2A, 44-100 Gliwice, Poland

E-mail: andrzej.starosolski@polsl.pl

M. E. Rudin proved under CH that for each P-point there exists another
P-point strictly RK-greater. This result was proved under p = ¢ by A. Blass, who
also showed that each RK-increasing w-sequence of P-points is upper bounded by
a P-point, and that there is an order embedding of the real line into the class of
P-points with respect to the RK-order. The results cited above are proved here
under a (weaker) assumption b = c.

A. Blass asked in 1973 which ordinals can be embedded in the set of P-points,
and pointed out that such an ordinal cannot be greater than ¢*. This question is
answered by showing (under b = ¢) that there is an order embedding of ¢* into
P-points.

The techniques of the proofs in this paper are based on a method of contours,
which enables one to argue more easily and concisely.
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On space of continuous functions given on certain
modifications of linearly ordered spaces

T. Khmyleva, E. Sukhacheva

Faculty of Mechanics and Mathematics, Tomsk State University,
36 Lenina ave., Tomsk 634050, Russia

E-mail: tex2150@yandex.ru, sirius9113@mail.ru

We consider C,(X), where X is a modification of the Sorgenfrey line or an
Hattori space [Y. Hattori, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math.
Sci., 2010]. For a subset A of the real line R, the modification of the Sorgenfrey
line, denoted Sj, is defined as follows: a basis of neighbourhoods for x € A is
given by the right open intervals [z,y), © < y, y € R, and a basis for = ¢ A is
given by the left open intervals (y,x], z > y, y € R. For a subset A C R, the
Hattori space, denoted H(A), is defined as follows: a basis of neighbourhoods for
x € A is given by the usual Euclidean neighbourhoods of x and a basis for x € A
is given by the left open intervals (y, x|, x > y, y € R. Notice that Sy = H()) =S
is the Sorgenfrey line. We establish two new facts.
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Theorem 1. Let A C R. Then the following conditions are equivalent:
(i) the spaces S and S4 are homomorphic;

(i) A is an F, and Gs-absolute space;

(iii) the spaces Cy(S) and Cy(S4a) are linear homomorphic.

Theorem 2. Let A C R. Then the following conditions are equivalent:
(i) the spaces S and H(A) are homomorphic;

(i) A s scattered;

(iii) the spaces Cy(S) and C,(H(A)) are linear homomorphic.

Some new classes of ideals of C'(X) and AX
A. Taherifar

Department of Mathematics, Yasouj University,
Daneshjoo str., Yasouj, Iran

E-mail: ataherifar@mail.yu.ac.ir, ataherifar54@gmail.com

In this talk first we give a new representation for closed ideals in C'(X) and
the intersections of maximal ideals in C*(X). Next, for a completely regular
Hausdorft space X, we construct a space AX in X containing v.X and show
that X is Lindelof if and only if X coincides with AX. We also characterize the
spaces X for which some familiar ideals of C'(X) would be closed ideals. For
instance, it is shown that Cs(X) is the intersection of all free maximal ideals of
C'(X) if and only if every open locally compact o-compact subset of X is relatively
pseudocompact.
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C,-theory applied to Model Theory
F. D. Tall

Department of Mathematics, University of Toronto,
Toronto, ON M5S 3G3, Canada

E-mail: £.tall@utoronto.ca

I will first briefly survey the many areas of my research that have been strongly
influenced by Prof. Arhangel’skil’s work. Then I will talk about how C,-theory (an
entirely new area for me) is applied to Model Theory, that branch of Mathematical
Logic that deals with semantics (rather than syntax) and, in particular, definabil-
ity. In particular, in collaboration with model theorists J. Iovino, X. Caicedo,
and C. Eagle, we extend the solution by Casazza and Iovino of Gowers’ question
concerning the definability of the Tsirelson Banach space beyond first-order logic.

* This is a joint work with Jose Iovino.

Gaps in lattices of topological group topologies

Mikhail G. Tkachenko

Departamento de Matemadticas, Universidad Auténoma Metropolitana,
Av. San Rafael Atlixco 186, C.P. 09340 Iztapalapa, México D.F., Mexico

E-mail: mich@xanum.uam.mx

The family of all topological group topologies, with the operations of taking the
meet and join of topologies, forms a complete lattice. One of the many intriguing
questions about this kind of lattices is the existence of gaps. We focus our at-
tention on Hausdorff predecessors of locally compact topological group topologies
and provide an almost complete description of these predecessors. An interesting
relation between these predecessors and the Bohr topology of a locally compact
abelian group is established as well.

We show, for example, that every Hausdorff predecessor, o, of a (noncompact)
locally compact topological group topology 7 on an abelian group G contains the
Bohr topology of the group (G, 7) or, equivalently, every continuous character of
the group (G, 7) is o-continuous. Furthermore, we show that the group (G, o) is
not metrizable, while it is consistent with ZFC that the cardinality of any local
base at the identity of (G, o) is at least 2.
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Several open problems on the gaps in the lattices of topological group topologies
on abelian groups will be posed in the lecture.

* This is a joint work with Wei He, Dekui Peng, and Zhigiang Xiao.

Some remarks about Alexandroft’s hypothesis
concerning V?-continua

V. Todorov

Department of Mathematics, University of Architecture, Civil Engineering and Geodesy,
1 Hr. Smirnenski blvd., Sofia 1042, Bulgaria

E-mail: tt.vladimir@gmail.com; vtt_fteQuacg.bg

Let X be a metric space. The n-dimensional diameter d,(X) of X is the
number inf{mesh(U)}, where U runs over the set of all open coverings of X with
ord(U) < n+ 1. We say that a metric space X is an (n,e)-connected between
its disjoint closed subsets A and B if for every partition C' between A and B we
have d,,_2C > <.

Recall next, that a metric compact space X is a VP-continuum (P.S. Alexan-
droff, 1956) if dim X = p and for every disjoint pair F' and G of closed subsets
of X with non-empty interiors there exists € > 0 such that X is (p, €)-connected
between F' and G.

In 1956 P.S. Alexandroff introduced a hypothesis providing a condition under
which the sum of two V?-continua is a VP-continuum. Later (1979) it was proven
by myself that the Alexandroff’s hypothesis is not valid.

In the present talk we discuss some development concerning that hypothesis
of P.S. Alexadroff.

Some results on paracompact remainders

Alexander V. Arhangel’skii, Sec¢il Tokgoz

Department of Mathematics, Faculty of Science, Hacettepe University,
06800 Beytepe—Ankara, Turkey

E-mail: secil@hacettepe.edu.tr

All spaces under discussion are Tychonoff. A remainder of a space X is the
subspace bX \ X of a compactification bX of X. We investigate how some para-
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compactness type properties of a space interact with properties of remainders of
this space.

Spectral representations of topological groups
and near-openly generated groups

V. Valov

Deaprtment of Computer Science and Mathematics, Nipissing University,
100 College Drive, P.O. Box 5002, North Bay, ON P1B 8L7, Canada

E-mail: veskov@nipissingu.ca

The class of of near-openly generated topological groups is introduced and
investigated. It is a topological subclass of R-factorizable groups. We provide both
topological and external characterizations of this class using spectral methods.

* This is a joint work with K. Kozlov

Constructing a minimal left ideal of (w*, +)
which 1s a weak P-set

Jonathan Verner

Department of Logic, Faculty of Arts, Charles University,
Sokolovska 83, 18675 Praha, Czech Republic

E-mail: jonathan.verner@ff.cuni.cz

We modify Kunen’s construction of weak P-points to construct a minimal left
ideal of the semigroup (w*, +) which is also a weak P-set.

% This is a joint work with Will Brian.
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On semiconic idempotent commutative residuated lattices

Chen Wei

School of Mathematics and Statistics, Minnan Normal University,
Zhangzhou 363000, China

E-mail: chenwei68084670126.com

In this paper, we study semiconic idempotent commutative residuated lattices.
An algebra of this kind is a semiconic generalized Sugihara monoid (SGSM) if it
is generated by the lower bounds of the monid identity. We establish a category
equivalence between SGSMs and Brouwerian algebras with a strong nucleus. As
an application, we show that central semiconic generalized Sugihara monoids are
strongly amalgamable.

Capturing topological spaces
by countable elementary submodels

Hang Zhang

School of Mathematics, Southwest Jiaotong University,

Chengdu 610031, China

E-mail: hzhangzhOgmail.com

Given a Tychonoff space (X, 7) and an elementary submodel M of a sufficiently
large initial fragment of the universe such that (X,7) € M, we can define a
quotient-like topological space X/M by a method introduced by Bandlow and
Dow. The space X/M is always separable metrizable if M is countable. We
give sufficient conditions for X such that X/M is homeomorphic to some familiar
subspaces of the real line (2, w“| intervals, etc.). To this end, we establish several
preservation theorems in the form that “if X has &+ P, then X/M has P for any
countable M.” Questions are posed.
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O dyHKTOpax MOJIyaJIIUTUBHBIX O-TJIaIKIX
(byHKIIOHAIOB

P. b. Bemmumos, H. K. Mamagamues

MaremaTndeckuii (paxy/abTeT,
Hanmonabubiit yuusepcurer Y3b6ekucrana nmeHn Mupso Yiayroeka,
Vzoekucran, 100174 TamkenT, YHuBepcurerckas yi. 4

E-mail: rbeshimov@mail.ru, nodir_88@bk.ru

B pabore BBojuTCst pynkrop OS, MOMYaIUTUBHBIX O-TJIAJKIX (DYHKITHOHA~
JIOB B KATErOPHUIO TUXOHOBCKUX IPOCTPAHCTB T ych, KOTOPBIN MPOIOIKHAT (PyHK-
Top OS: Comp — Comp nonyaJiuTUBHLIX (DYHKIHOHAIOB. JloKasbiBaeTcs, 9To
dyukTop OS,: Tych — Tych nepeBonuT Z-BIOXKEHUsI BO BJIOXKEHHsI. A Tak-
Ke JIoKasbiBaeTcst, 4To npocTpancTBo OS,(X) 3aMKHYTO JIEKUT B IPOCTPAHCTBE
O,(X) ciabo aINTUBHBIX O-IVIATKIX (QYHKIHOHAJIOB, TTOJHO 110 XBIOUTTY JIJIs
JII0O0I0 TUXOHOBCKOI'O IIPOCTpaHcTBa X .

O TomoJIOrmIecKuX rpymax

C. A. Borarblii

MexaHuKO-MaTeMaTnIecKuii (haKyaIbTeT,
MockoBckuit rocynapctBernbiit yansepcureT uM. M. B. Jlomonocosa,
119991 Mocksa, Jlenunckue ['opwr 1

E-mail: bogatyi@inbox.ru

1. B 1954 rosy Jennings Bees B mupokoe usydenne rpymiy J (k) dopmaibabix
creneHHbX pajos f(zr) = x + apx? + apa® + -+ = (1 + aqr + awr? +...)
¢ KoapuimenTaMn B KOMMYTaTUBHOM KOJIbIE v, € K, — B KadecTBe onepamuu
paccMmarpuBaercst komnosunus. B ciydae nons k = Z, rpyuna J(Z,) obsaja-
eT CBOWCTBOM YHHBEPCAJHLHOCTH 110 BJIOYKEHHUIO CUETHBIX P-TPYIIT U HA3bIBAETCS
Horrumnremckoit rpymmoit. st kosen Z, Zs u Zy, p > 3 (TOHOJOrTYECKHE) KOM-
MyTaTopbl TpyI J?KeHHHHTCa CYIecTBeHHO oTmdarorces [1].

B nokiajie paccMarpuBaeTcs MHOIOMEPHBIH aHaJor I'pyIibl JI»KeHHUHrca n
MTOKA3BIBACTCSI, ITO 331494 OIMICAHUS (TOMOJIOTHIECKOT0) KOMMYTATOPA MTPUBO/IAT
K OTBETY HECKOJIbKO MHOMY, YeM B OJIHOMEPHOM CJIydae.

2. Obcy:ktaeTcs 3a/ia4a BbIYUCIEHNs YICIa TOIOJ0rn3aluil abcrpakTHO abe-
JieBoit rpytibl G 6eckoHeuHOi MotHOCTH M. OCHOBHOMN HAIIl PE3YJ/IBTAT 3/1eCh ObLI
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moJIyueH B copMecTHOit pabore [2|. K coxkasennio, B MOMEHT IyOIMKAIIINN ABTOPBI
He 3HaJI O COOTBETCTBYIONINX HccjeoBanustx, Koropeie mposen W. W. Comfort
u Dieter Remus B crarbsix [3-5|. Cunraem HEOOXOIMMBIM OTMETUTH 9Ty HEJIOPa-
OOTKY B JIOKJIA/IE.
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[TapaHopMaIbHOCTD TTOIMHOYKECTB
IPOCTPAHCTB (DYHKITHIL

Anekceitr BoromoJsios

MexaHuKo-MaTeMaTuIecknii (haKyabTeT,
MockoBckuii rocynapctBennbiii yuusepcuteT uM. M. B. Jlomonocosa,
119991 Mocksa, Jlenunckue ['opor 1

E-mail: a.v.bogomolov94@yandex.ru

Tormosiormaeckoe MpoOCTPAHCTBO HaszbiBaeTcss naparopmasvhvim [P Nyikos,
Topol. Proc., 9(2) (1984), p. 367, ecyiu jijist Jit000it CIETHOI JIUCKPETHOI CHCTEMBI
3aMKHYTBHIX MHOX)eCTB {0, : n < w} HaiiJércs JIOKAJIbHO KOHEYHAsl CHCTEMa
OTKPBITBIX MHO)KeCTB {U,, : n < w} Takas, 9T0 i BCeX N < W BBIIOJHIETCS
D, c U, uD,NU, # () B ToM 1 ToapKo B ToM ciaydae, korga D, = D,,.
Bce HOpMaJsibHBIE TTPOCTPAHCTBA M BCE CUETHO IapaKOMIIAKTHBIC MPOCTPAHCTBA
SIBJISTIOTCSI TIaPAHOPMAJIBLHBIMIA.

Nspectno [A. B. Apxanrenbekuii, «Tomoorundeckne mpoctpancTBa hyHKIHIT,
Hs0-60 MI'Y, Mocksa, 1989, teopema 1.5.6], aro npocmparcmeso gyrruyuts Cp(X)
HACACOCMBEHHO HOPMAALHO 6 MOM U MOALKO 6 MOM CAYUAE, ECAU OHO COBEPULEH-
Ho Hopmaavro. Ilpemnaraercs ciemyomiee 0000IIEHIE 9TOI TEOPEMBI.
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Teopema 1. [Ipocmparcmeo Cp(X) nacaedcmsenno napaHopmasoro 6 mom
U MONBKO 8 MOM CAYYaAE, ECAU OHO COBEPULEHHO HOPMANLHO.

Herocpe/IcTBEHHBIM CJIeJICTBIEM TeOpeMbl 1 SIBJISIETC YTBEPKJIEHHE O TOM,
qTo ecsn J106oe nojMHOzKecTBO npocrpatHcTBa Cpy(X) cuéTHO mapakoMIakTHO,
t0 C)(X) coBepIenno HOPMAJILHO.

Teopema 2. JTwboe F,-nodmmnosicecmeo npocmpancmea Cp(X ) naparopmans-
HO 6 MOM U MOALKO 6 mom cayyae, ecau Cp(X) Hopmanvro.

PapnomepHo nepuctbie IpocTpaHcTBa

A. A. Bopyb6aeB

Nucruryt maremaruku HAH Keiprersckoit Pecriybsimkn,
Keipremsekas Pecriyonuka, 720071 Bummkek, np-t Yyit 265a

PaccmarpupaloTes paBHOMEPHDBIE aHAJIOIH EePUCTLIX, MOJHBLIX 110 Uexy u 6/1u3-
KIX K HUM IIPOCTPAHCTB.

Pasnomeproe poctpancTso (X, U) HABBIBAETCS PAGHOMEPHO T-NEPUCTNbIM, TIE
Ng < 7 < w(x), ecan cymiecTByer mceBopaBHOMepHOCTE ¥ C U, YI0BIETBODSIIO-
IAst CJICYIONIUM YCJIOBHSAM:

1) w®) <,
2) (Ha(z) : a € ¥} = K, komnakrno 151 oboro © € X,

3) cucrema {a(K,) : a € UV} sBisiercst GbyHIAMEHTATBLHON CHCTEMON OKPECT-
HocTell KoMmItakTa K, Juis Kaxkjgoro x € X.

Panomepno Ny-miepuctbie TPOCTPAHCTBA HA3BIBAIOTCS ITPOCTO PABHOMEPHO Me-
PUCTNDILMU.

Beskoe Merpusyemoe paBHOMEPHOE MPOCTPAHCTBO SBJIAETCA PABHOMEDPHO TIe-
PUCTBIM.

Teopema. /lasa pasromeprozo npocmpancmea (X,U) caedyrowue ycrosus
PABHOCUALHDL:
1) pasnomeproe npocmparcmeo (X, U) A6aiemcs pasHOMEPHO T-NEPUCTOIM,

2) pasnomeproe npocmparcmeo (X,U) omobpasrcaemcsa Ha HEKOMOPoe pasHO-
meproe npocmparcmeo (Y,9) eeca < T nocpedcmeom cosepueniozo pas-
HOMEPHO HENPEPBIBHO20 OMOODANCEHUA.
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Tononornyueckas KiaccuuKayms IPOCTPAHCTB
09POBCKUX KOHEUHO3HATHBIX (PYHKINIT

JI. B. I'enze, C. II. I'yipko, T. E. XmbL1éBa

Mexanuko-maremarudeckuii paxyabrer, TOMCKEUI TOCy1apCcTBeHHbIN YHUBEPCHUTET,
634050 Tomck, tip-1 Jlenmna 36

E-mail: genze@math.tsu.ru, gulko@math.tsu.ru, tex2150Q@yandex.ru

[Tostnast mHeliHast ToroornyecKast Kjiaccudukalms 0aHaX0BbIX TPOCTPAHCTB
C'[0, ] Bcex HempepbIBHBIX (DYHKIMI HA KOMIAKTHBIX OTPE3KaX OP/MHAJIOB Obl-
J1a mposejieHa B paborax Beccaru u Ilenmunnackoro, Cemajienn, I'yibko 1 Ocbku-
Ha 1 KucisikoBa. 11o3ke mosiBusiach JimHeiiHasT TOIOJIOITYeCKasl KIaCCH(IKAIINST
9TUX 2Ke TIPOCTPAHCTB ¢ TOMOJIOTHell morodednoit cxoqumoctu (Baape u ge I'por,
['yibko). 3arem aBTOpaMu ObLTa MPOBEJEHA JIMHEHAS TOMOJIOTHIECKas KJIACCH-
dbukanus npocrpancts 6sposckux byuknuit By([0,a],Y), rue Y — 310 s1160
BEIeCTBEHHAsT IpsiMasd, Jinbo rpymnna Zs, a takxke npocrpancts Cy([0, af,Z,).
HejlaBHo aBTOpaM yjia/10ch JI0Ka3aTh, YTO TONOJOIHYecKast KjaaccuduKalus mpo-
CTPaHCTB B, [O, a] COBIIQJIAET C JIMHEITHO TOIOJIOrn4IecKoii Kiaccudukalein 3Tux
IIPOCTPAHCTB.

3/1ecb MBI IIPOBOJUM TOIIOJOTNYECKYIO KJIaCCHMUKAIINIO TPOCTPAHCTB 03POB-
ckux yuxunii By([0, o, Zs). Homyuena ciemyionias

Teopema. [Iycmo o u B — beckoneunvie opdunarv, u o < 3. Toeda npocmpan-
cmea By([1, &, Zs) u By([1, 8], Z2), eomeomopdrio, mozda u moavko mozda, kozda
BOINOAHACINCA 00HO U3 CACOYOUUL B3AUMOUCKAIONANOULUL YCAOBUTLL:

Hw<a<f<w;
2) wi <a<f<ws;

) Tn<a< <71 (n+tl), 2deT > wy — HAUAAHVIL PELYAAPHBLT OPOUNAA
un <w;

Hr-c<a<lB<T 0", 20eT>wy — nHauaronvili pe2ysaphvili opounan,
o — maxot nauarbhwil opdunan, wmo w < o < T u ot — naumenvuwul
HAUANOHDOIT 0POUHANA, OONLUUT, YeM T ;
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5) P <a<B<T1h edeT > wy — Hanaavrbill peayaaprviti opouran u T —

HAUMEHBUUT HAYAALHBLT 0pOUHan, DoALWUL, “eM T,

6) T<a< B <7, 2de T >wy — HAUANLHLIT CUHYAAPHOIL OPOUHGAN.

O cyneprnapakoMIIakKTHOCTU oToOpaykKenuit Buja A\ f

. . 2Kymaes

Kademapa maremaTukn u ecTeCTBEHHBIX HAYK,
TamkenTckuit apXUTEKTYPHO-CTPOUTE/IHHBIN UHCTUTYT,
V30ekucran, 100011 TamkenT, ysi. HaBon 13

E-mail: d-a-v-ron@mail .ru

Hacrosimast pabora sijisiercs npojio/izkennem pabotst |1 B obiactu ucciieio-
BaHU{l TeOpUN CyleprapakoMIIaKTHBIX ITPOCTPAHCTB.

Cucrema w TOJIMHOYKECTB MHOYKeCTBa X HA3BIBACTCS 3663010 cuémmoti (KoHeu-
HOTl), €CJIN KazKJIbIil 9JIEMEHT CHCTEMbBI W MEPECEeKAETCsT He oJiee YeM cO CIETHBIM
(KOHEUYHBIM) YHCJIOM 3JIEMEHTOB 9Toil cucrembl. KoHeuHast 1M0C/e10BaTeIbHOCTD
noamuozkecTB My, . . ., Mg MHOXKecTBa X Ha3bIBACTCA UENnblo, C8A3bLEAIOULET MHO-
orcecmea My u My, ecrmn M; 1N M; # () nupu mobom i = 1, ..., s. Cucrema w no-
MHOXKECTB MHOXKeCTBa, X HA3bIBAETCS CUENAEHHOT, €CU JJIs1 JTI0OBIX MHOYXKeCTB M
u M’ 3T0it cucTeMbI CYIIECTBYET Takasl Lellb 3JIEMEHTOB CUCTEMbl W, YTO HePBbIii
9JEMEHT el ecTh MHozKecTBo M, a nmociaennnii — muozkectso M.

MakcumaJsibHbIe CIEIIEHHbIE TIOJICUCTEMbI CUCTEMbI W Ha3bIBAIOTCS KOMNOHEH-
mamu cyenaernocmu (NI KOMIOHEHTAMN) CHCTEMbBI w. [Ipr 95TOM KOMITOHEHTHI
3BE3J/IHO CUETHON CUCTEMBI W CYETHBI W TeJIa Pa3JIUIHbIX KOMIIOHEHT CUCTEMBI W
T3 BIOHKTHEI [2].

st ipoctpancTBa X U cHCTEMBI ero noamuoxkects w = {0, : a € A} nona-
raeM [w] = [w]x = {[Ou]x : @ € A}.

3BE3/IHO KOHETHOE OTKPBITOE MOKPBITHE MpocTpancTBa X HasbiBaeTcs (2] xo-
HEYHOKOMNOHEHMMHDLM, €CJIN BCE IO KOMIIOHEHTHI CIEIJIEHHOCTH KOHEYHbI.

st TuxonoBckoro npocrpancTBa X depes X obozaaunm ero Croyn-Yexos-
CKYIO KOMITaKTU(DUKAIUIO.

Hamomunm, [aro nempepsiBHOe orobpaxkenume f: X — Y wnasweiBaerca |[2]
Th-omobpasiceruem, eciu JJisd KazKioii napbl Pa3JndHbIX TOUYEK T, T TaKUX, 4TO
f(z) = f(2), xorst ObI y omHOI U3 9TUX TOUeK B X HAJIETCsI OKPECTHOCTD, He
cojiepxKalias Apyryio Touky. HemnpepoiBaoe oroopazkenne f: X — Y HasbiBaeTcs
2] 6noane pezyaaprovim, ecin st m0boit Toukn x € X 1 JIIOOOTO 3aMKHYTOIO
B X MHOXKecTBa F', He comeprKalero TO4YKy &, HaiiéTcss Takask OKpecTHOCTh O
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toukn f(z), uro B Tpyoke f 1O muoxkectBa {x} n F dbyHKIHOHAILHO OT/Ie/H-
mbl. Hakownerr, Brostae perysisipnoe 1y-0ToOparkeHrne Ha3bIBACTCS MULOHOGCKUM
omobpasicerue.

Henpepnishnoe 3amkuyToe otodpaxkenue f: X — Y HasbiBaeTcs Ouxomnarm-
nowm (U, A. Baitnmrreiin, [2|), ecin npoobpas f~1(y) kaxoit Toukn y € f(X)
OMKOMIIAKTEH.

BukomuaxTHoe otobpaxenne f: X — Y HaspiBaeTcs Gukomnakmugurayued
HerpepbiBHOIO oToOpaxkenust f: X — Y, eciin X BCIOJLy IJIOTHO BJIOYKEHO B X.Ha
MHOXKECTBE BCeX OMKOMIAKTUMUKAIINI 38/ JaHHOIN0 0TOOpayKeHus f MOYKHO BBECTU
JaCTUIHBIN TOPSIIOK: Jitd OukoMiakTudukamuit b1 f: X1 — Y n bof: Xo = Y
orobpazkenust f Oyzmem cuntarb by f < by f, ecam cyiiecTByer ecrecTBenHoe (T.e.
TOKJIECTBEHHOE Ha MHOXKecTBe X ) oToOpazkeHne mpocTpaHcTBa Xo Ha X7.

B. A. IlaceiHKOB mOKa3aj, 9TO JJIsT KayKJO0r0 THUXOHOBCKOTO OTOOparKeHMsI
f: X — Y cymecrByer ero MmakcumaJjibHasi OukoMiaxkTudukaius g: £ — Y,
KOTOPYIO OH 0003HAUYMJI CUMBOJIOM (3 f, a IIPOCTPaHCTBO Z, Tjie OlpejeseHa 3Ta
MaKcuMaJibHas OMKoMIakTuduKanus, — cuMBosoM [FrX.

Onpenenenne 1 [2]. Tuxonosckoe orobpazxenue f: X — Y HasbBaercs cy-
NEPRAPaKoMNaKMHbLM, €CIIN JIs JII000ro 3aMKHyTOro B 35 X MHOXKecTBa F', j1exa-
mero B 5 X \ X, Hail1€TCs KOHEUHOKOMIIOHEHTHOE HOKPBITHE A IPOCTPAHCTBa X,
BLIKasIbIBatomee MHozxectso F' B B X (T.e. F'N (U[A]g,x)).

st Tonosiorndeckoro Ti-npoctpancTBa X depe3 AX 0003HAUUM CYneppacui-
perue TTPOCTPaHCcTBa X, T.e. MHOXKECTBO BCEX MAKCUMAaJIbHBIX CIEIJIEHHBIX CUCTEM
3aMKHYTBIX B X MHOXKECTB, HaJleJICHHOEe BOJIMIHOBCKOI TOIOJIOTUENA.

IIycts f: X — Y — HenpepsiBHOE oTOOparkeHue Ti-mpocrpaHcTs. Torma Jiist
£ € AX cucrema {[f(F)]y : F' € £} aBisiercst MaKCHMAJIBHOI CIIEIIEHHON CHCTe-
Moit. VI3BecTHO, 4TO 3Ta cucTeMa OJHO3HAYHO JOCTPAMBAETCA O MaKCUMAaJbHOM
CICIJICHHOM CHCTeMbI IpocTpancTBa Y, Kotopyto obosuatum A(f)(£). Urak, mia
orobpaxkenus f: X — Y onpeneneno orobpazxkenune Af: AX — Y.

Teopema 1. Tuzonoscroe omobpascenue \f : AX — Y cynepnaparxomnarm-
HO mozda u moavko moezda, kozda omobpascenue f: X — Y cynepnaparom-
NaxmHo.
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O ITOJIMHOZKECTBAX ITPOCTPaHCTBa NACMIIOTEHTHDBIX
BEPOATHOCTHBIX MED U a0COJIIOTHBIE PETPaAKTbI

A. A. Bautos, A. . Nimmeros

Kademapa maremaTuku u ecTeCTBEHHBIX HAYK,
TamkeHTCKUI apXUTEKTyPHO-CTPOUTEILHBIN HHCTUTY'T,
V36ekucran, 100011 TamkenT, ysi. HaBon 13

E-mail: adilbek_zaitov@mail.ru, ishmetov_azadbek@mail.ru

Pacemorpum muO)kectBo Ry = RU {—00} ¢ nByms asrebpamdeckuMu orepa-
IUSIMIT: CJIOYKEHUEM D U YMHOXKeHUeM (), OIPeeIEHHBIMU CJIETYIONTNM 00pa30M:
u®v=max{u, v} uu®v =u+0v, u,v € Ry, rge R — MHO)KecTBO JieiicTBU-
TeJILHBIX YUCEIL.

[Tycts X — kommakTHOE Xaycaopdoso npocrpanctso, C(X) — anrebpa Herpe-
pbiBHBIX yHKIN Ha X ¢ 006braHbIME anrebpandeckumu onepaiusivu. Ha C'(X)
oreparuy G u O OUPeeNM 10 MpaBuiaM ¢ @1 = max{p, ¥} 1 p O = @+,
rie ¢, ¥ € C(X).

Hanomunwm, aro dyuximonar p: C(X) — R waseiBaercs [1] udemnomenmmod
sepoammocmmots mepoti Ha X, ec oH 06/1aJ1aeT CJIELYIONIMEI CBORCTBAMU:

(1) u(Ax) = X\ st Bcex A € R, riie Ay — nocrosiaaast QyHKINST;
(2) A O @) =AO p(p) maa secex A € Ru p € C(X);

(3) ulp @) = ple) © p(y) as seex ¢, ¢ € C(X);

Jst KommakTHOTO Xaycpopdoso mpoctpancTBa X obosnadnm gepes I (X) muo-
JKECTBO BCEX HJIEMIIOTEHTHBIX BEPOsATHOCTHBIX Mep Ha X . Pacemorpum I(X) kak
nospocTpancTso npocrpamcrsa REK).

Jtst 3a/1aHHBIX KOMIIAKTHBIX Xayc10pdOoBbIX 1pocTpancT X, Y U HelpepbiB-
Horo orobpaxkenusi f: X — Y MOXKHO NpPOBEPUTH, YTO €CTECTBEHHOE OTOOPAarKe-
we 1(f): 1(X) — 1(Y), onpexenémmoe o dopmyate 1(f)()(®) = p(v o 1)
HelpepbiBHO. BoJiee Toro, KOHCTpyKIWst [ sIBJIsSIeTCs HOPMAJIbHBIM (DYHKTOPOM.
[TosTomy jjist TPOU3BOJIBHOM HJIEMIIOTEHTHOl BeposiTHOCTHON Mepbr 1 € (X))
MOKHO OTPEJIe/INTH MOHATHE HOCUTEJIS:

suppu:m{ACX:Z:A, MGI(A)}.
JIJ1s1 TIOJIOZKUTEJILHOTO 11100 YUC/Ia 70 OIIPEACUM CJIEAYIONEe MHOXKECTBO:

L,(X) ={p e I(X): [suppu|<n}.
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[TostoxkuM

Muozxkectso 1,(X) Bciomy miorno [1] B I(X). VgeMIoTeHTHY IO BEPOSITHOCTHYTO
mepy p € I,(X) HaszpBalOT udemMnomenmmot epoOAMHOCTIHOT MEPOTL ¢ KOHEY-
HOLM HOCUTMENEM.

IIycte X m Y — aBa KomIakTa, Jiexkariue B npoctpanctsax M um N coot-
BercrBento, riae M, N € AR. IlocienoBarenbrocTs oTobpazKkennit fr: M — N,
k=1,2,..., nazoBéM QyHIaMeHTaJIbHOM 1ocIe10BaTe/IbHOCTRIO 3 X B Y, eciu
JJTsT Kazk 101t okpectHOCTH V' KoMmakTa Y (B N ) cyIecTByeT Takast OKpeCTHOCTh
U xomnakta X (B M), uro frly = fre1ly B V nouarn s Beex k. D10 3HAUHUT,
aro cymectByer Ttakas romororust fr: U X [0,1] — V., garo fi(x,0) = fi(x)
u fro(z, 1) = fro(z) mg seex z € U. D1y DyHIAMEHTATBHYIO MOCIEI0-
BaTeJILHOCTL OyjieM obosnadaTh uepes { fi, X,Y'} mmm koporko uepes f, u Oy-
nem mrcath f: X — Y. Ckaxem, 910 dyHIaMeHTaIbHAS 110CIEI0BATETIbHOCTD
f={fx, X, Y} nopoostcdena omobpascenuem f: X =Y ecu fr(x) = f(x) nia
Beex x € X u juisa Becex k = 1,2,... CkaxkeMm, 9To npoctpanctea X u Y @PyH-
DAMEHMANBHO IKEUBAAECHMMDL, €CJIUN CYLHIECTBYIOT Takue jiBe (byHIaMeHTaIbHbIe
nocyenoBaresibioctn f: X - Y nug: Y — X, uro gf =idx u fg = idy.

Ecmm r: X — F — perpaxitus u cyiiectByeT takasi romoronus h: X x [0, 1] —
F, aro h(z,0) = x, h(x,1) = r(z), s Becex x € X, To 7 Ha3bIBaOT deghopma-
yuonHot pemparyuet, a F — dedopmaryuonmvim pempaxmom npocTpancTsa X .
Hedopmannonnas perpakiud r: X — F HaspiBaercad cuavhotl dedhopmaruonmot
pempakyued, ecnn nsa romororn h: X x [0, 1] — F umeem h(zx,t) = x nis Beex
r € F uscexte|0,1] 5]

Teopema 1. /[aa npoussosvrozo 6uxomnarma X cyuwecmseyem Henpepvle-
Haf, OMEPLIMAA, KAEMOUHON0J00HAA (M.e. 6Ce €€ CAOU CTMAZUBAEMILE) DEMPAK-

yua 7 1, (X) = 6(X).

IIpennoxenne 1. /Jaa npouscoavrnozo xomnaxma X noodnpocmpancmeo
d(X) asasemes cuavvm deghopmaruontvim pemparmom xomnaxma I, (X).

IIpennoxxkenne 2. [lycmv X — xoneunomephviiti AOKAADHO CEAZHBIT KOM-
naxm. Tozda 1,(X)\ 0(X) € ANR.

Teopema 2. [Tycmsy X € AN)R — womnaxm u dim X < oo. Tozda 1,(X) €
AN)R.

IIpennoxenane 3. DPynxmop I, coxpansem ceoticmseo Komnaxma OviMmb
Q-mmoz2000pasuem Ui 2UABOEPMOBHIM KUPNULOM.
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IIpennoxxxenne 4. PyukTop I, cOXpaHsieT CBOICTBO CJIOEB 0TOOParKeH!s ObITh
A(N)R-komnaxkTom, KoMnakTHbiM Q-MHOr00OpasueM 1 ruibOepTOBBIM KUPIII-
9OM (KOHEUHOf CyMMOi MHIbOEPTOBBIX KUPITHIEii).
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Oo6ob1enne TeopeM Bapunbona n Burrendbayspa

FOpuii 3axapsu

MexaHuKO-MaTeMaTuIecKuii (haKyabTeT,
MockoBckuii rocynapctBennbiii yauusepcuteT uM. M. B. Jlomonocosa,
119991 Mocksa, Jlenunckue ['opsor 1

E-mail: yuri.zakharyanQgmail.com

PacemoTpum jiBe Teopembl Kitaccutdeckoit mannmerpun. [ycrs ABC D — nipo-
M3BOJIbHBIN IeTBIPEXYTOIBHUK, JUANOHAJN KOTOPOIO HE SIBJISIIOTCS ITapaJlieIbHbI-
MU U repecekatores B Touke O.

Teopema (Bapunvon). Ilpamovie, coedunmouwsue cepedunv, cmopon ABCD,
obpasyrom napasnresoepamm. Ecau ABCD e asasemcea camonepecexkaouumcs,
1

Mo NAOULAdL NAPAAIEN02PAMME cocmasadem 5 om naowadu ABCD.

Teopema (Butrenbaysp). Ilycms cmopons, wemvipéryzorvnura ABC'D pas-
deaenv, mpu pasuvie wacmu. IIpamovie, coeouHAOUWUE MOYKY PA3OUEHUA CMOPOH
603.4€ eepwum, 0opasyrom napassesoepamm. Eeau ABCD we asasemcs camone-

PECERAIOUUMCA, M020a NAOUA0L NAPAALEAOZPAMME COCTNABAALT, S 0om naowadu

9
ABCD.

ITox AAB Oy/ieM MMOHMMATh MOMOTETHIO TOYKH B ¢ neHTpoM A n Kosdduimen-
TOM A.
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Teopema 1. Ilpamvie A}AY, B;}Bé, CrCY, D(/}Di‘l 00pa3yrom napasseno-
epamm. Eeauw ABC'D me A8AAEMCA CAMONEPECEKAOUUMCH, MO NAOULGIL NAPAA-
aenozpama cocmasasem 2(X — 1)% om naowadu ABCD. Bydem e20 naszvieamo
2omomemuneckum napaniesozpammons K*LANMANN.

Teopema 2. [omomemuueckue napasLes02pammovl ABAANOMCA NEPCNEKUG-
HoMU ¢ uenmpom nepenekmucol 6 O. Kpome mozo, dis A1006x 08YT napanieno-
|OK*1| |\ —1]
0K*2| — 1|

2PAMMOB CNPABEINUBO

CBoiicTBa THIIA HOPMaJIbHOCTHN BHE JHal'OHaJIU

Anaroanit Kombaposn

MexaHuKO-MaTeMaTuIecKuii (haKyabTeT,
MockoBckuii rocynapcrsennbiii yuusepcureT uM. M. B. Jlomonocosa,
119991 Mocksa, Jlenunckue ['opsor 1

E-mail: kombarovO@mech.math.msu.su

[Tycts F — HOpMasIbHBIN (DYHKTOD cTerenn > 3, JeficTBYIONN B KATEropun
KOMITAKTOB W WX HEMPEPBIBHBIX 0TOOpazkenuit. Xoporiro n3sectna Teopema Derop-
qyKa O TOM, 9TO ecji KoMiakT J(X) Hacje/CTBEHHO HOPMaJIeH, TO KOMIAKT X
meTpusyeM. CrpaBel/InBo cieyiolee odbodIenne TeopeMbl PegopuyKa.

Teopema 1. Ecau npocmpancmeo F(X )\ X nacaedcmsenno naparnopmanvio,
mo xomnaxm X Mempusyem.

31eChb IPOCTPAHCTBO HA3BIBAETCS NAPAHOPMANOHOIM , €CTIN JJIsT JTF000 CUETHOI
JIMCKPETHOI CHCTeMbl 3aMKHYTBIX MHOXKecTB {D,, : n < w} HalljéTcs JOKAILHO
KOHEYHAsT CHCTeMa OTKPLIThIX MHOXKecTB {U, : n < w} Takas, 9T0 JJId BCEX
n < w semosnserca D, C U, u D,, N U, # () B ToM 1 TOJILKO B TOM CJIydae,

korga D,, = D,, |P. Nyikos, Topol. Proc., 9(2) (1984), p. 367|.

B npeamnonozkennn npunimmna Nencena A. B. BaHOB 1OCTPOII IPHMED KOM-
makTa X HECYETHOTO XapakTepa, JiJis KOTOPOro mpocTpancTsBo exp,,(X) \ X Hop-
MaJIbHO JijIst Jiioboro n > 1. 3ameruM, uro ecrectBennoe Biaoxkenne X C F(X)
B ciaydae dyakropa X' sapisercs oroxKiaecrsiaenneM X u jguaronaan A C X",
['oBopsAT, 9TO NMpOCTpaHCTBO X YJIOBJIETBOPSET CBOWCTBY P 61e duazonaiu, ecin
X2\ A € P. Crenyiomas Teopema jokazana B 1990 rogy A.B. Apxanreibcknm
u A.II. KombapoBsim.

Teopema 2. Xapaxmep nHopmasvhozo 6ne uazoHaAU KOMNAKMA CHEMEH.
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Sarem ['proHxare mocTpouI NpuMep HOpMaJIbHOI'O BHE JIUATrOHAJIN KOMIIAKTA, HE
SIBJISTIOITIETOCST COBEPINIEHHO HOpMaJIbHBIM. OTBeuast Ha Boripoc Kombaposa, I'pron-
xare Takzke 1ocTpomi B rpenosioxkennn CH npumep HemMeTpusyeMoro coBepiieH-
HO HOPMAJILHOI'O BHE JIaroHaJIi KOMIIAKTa. 3aMEeTHUM, 4YTO B HM3BECTHON MOJIe/In
Jlapcena u TomopueBnda Jir060il COBEPIIEHHO HOPMAJIbHBIN BHE JHMaroHaJIN KOM-
AKT METPU3YEM.

XopoIto U3BECTHO, 4TO HAPOCT Sw \ W HE COIEPIKUT TOUEK CUETHOIO XaPAKTEPA.

Teopema 3. Hapocm fw\w A6AAEMCA NAPAHOPMAALHBIM 6HE DUAZOHANU KOM-
NAKMOM.

[IpocTpancTBo HazbiBaeTcs F,-naparopmasvrvim, ecian jawodoe F,-110JMHOXKe-
CTBO 9TOI'0 IIPOCTPAHCTBA IAPAHOPMAJIbHO.

Teopema 4. F,-naparopmasorviti 61e 0ua2orast KOMNaKxm cooepicum 6crody
NAOTHOE MHOHCECTNBO MOYEK CHEMHO20 TAPAKIMEDGQ.

Bonpoc. Cuéren ym xapakrep [Fj-napaHopMajbHOIO BHE JIUATOHAJU KOM-
makTa’

O HenpepbIBHOI 3aBUCUMOCTH pelleHuil
OT TIapaMeTpa MpaBoil 4YacTl B YCJIOBUAX
tuna Kapareonopu—IlLinma—/Issn

E. FO. Mrbraka, B. B. ®ummmnos

MexaHnKO-MaTeMaTuIecKuil (DaKyIbTeT,
MockoBckuii rocynapctBennbiii yuusepcuteT uM. M. B. Jlomonocosa,
119991 Mocksa, Jlenunckue ['opnr 1

E-mail: mychkaevg@mail .ru, vvfil@mech.math.msu.su

Mpr J0Ka3bIBaeM HETPEPBIBHYIO 3aBUCHMOCTE PENIeHUi 0T mapamMeTpa o Jnd-
depeHImaIbHOr0 BKIIOUEHTA

yeFty,a), (*)

mpaBasi 9acTh KOTOPOT'O VJIOBJETBOPsAeT ycjaoBusaM Tuia Kaparteomopu—ILiurra—
sBu. IIpm 3TOM HMCHOJIB3YIOTCS METO/BI aKCHOMaTHIECKON TeopUn OOBIKHOBEH-
Hbix Juddepenimaibabix ypasennit (em. [B. B. @uunmos, «IIpocrpancrsa pe-
IIeHNiT OOBIKHOBEHHBIX Jud hepeHnnaabubix ypaBaennits, 13d-e6o MI'Y, Mocksa,
1993)).

Teopema. [Iycmv das mrozo03navunozo omobpasrcenus F: U x M — R™:
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1) cywecmeyem unmeepupyeman no Jlebeey dynruyus p(t) marxas, wmo
F(t,y,a) C [Ouu)(0)] npu ecex (t,y) €U ua e M;

2) daa mobozo a € M u aobozo pewenus z(t) nepasencmea ||2(t)]| < ¢(t)
nowmu npu scex t muootcecmeo F(t, z(t), a) 3amkrymo u ewnyk.io u omoo-
paostcenue Fy noaynenpepvisno ceepry 6 mouxe (2(t), ).

Tozda pewerus Juddepenyuarvrozo exaoverus (*) HENPEPLIBHO 3A6UCAM OM
napamempa o € M.

B kadectBe cieJicTBUsI NPUBEJAEM yTBEpXKeHUE, 0000IIatolee o0IEn3BeCT-
HYIO TeOpeMy KJIaCCUIeCKOi TeOpun OOBIKHOBEHHBIX JuddepeHnnaabHbIX ypaBHe-
auit (cm. |@. Xaprman, «O6bikHOBeHHDIE JAud depeHnuaibabie ypasaenus», Mup,
Mocksa, 1970]).

CaencrBue. [lycmv odnosraunasn gynxyus f: U x M — R”

1) oepanunena no modyaio xoncmanmot C' > 0;

2) das moboeo o € M pynrxyusa f(t,y, a) nenpepwena no (t,y) u das a0boeo
t € R ¢ynxuyua f(t,y, o) nenpepvisna no (y, ).

Tozda pewerus duddepernuuaiviozo ypasHeHus

y:f(tayaa)

HENPEPLIBHO 3a6UCAM. 0m napamempa o € M.

OIHOPOHBIE TONPOCTPAHCTBA ITPON3BEICHUS
SKCTPEMaAJIbHO HECBABHBIX IIPOCTPAHCTB

EBreunit Pesnnyenko

MexaHuKo-MaTeMaTniecKuii (haKyabTeT,
MockoBcknit rocyzapctBennblit yausepcureT uM. M. B. Jlomonocosa,
119991 Mocksa, Jlennnckue ['opsr 1

E-mail: erezn@inbox.ru

B [1] 6b110 mOKa3aHO, UTO MPOM3BE/EHIE MCeBJIOKOMIIAKTHBIX TDYIIIT MCEBI0-
KOMITaKTHO. B [2] ncesenyrorest cBoiicTBa THITA KOMITAKTHOCTH TIPOU3BEICHUS OJT-
HOPOJIHBIX mpocTpancTB. B mocrpoersl (Theorem 1.1) ogHOpO/IHBIE TICEBIO-
KOMITAKTHBIE TIPOCTPAHCTBa X , Y, JIJIst KOTOPBIX TTpou3Bejienne X X Y He 1ceBo-
koMmmakTHO. B mpemnosokerun ZFC+MA nocrpoensr (Theorem 4.1) opHopo/iabie
CYETHO KOMIIAKTHBIE IIpocTpaHcTBa X, Y, 1J1s1 KOTOPbIX IIpon3BeaeHne X X Y He
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TceBJOKOMIAKTHO. B [2| 6b11 mocTasaen Bonpoc (Question 5.1(a)) o Takom mpu-
Mepe 6e3 JIOMOJTHUTEIbHBIX TeOPUTHKO-MHOZKECTBEHHbBIX [TPEJIIT0JIOKEHHI].

Teopema 1. /s a106020 p € fw \ w cywecmseyrom 00HOPOOHBIE NPOCPaH-
cmea X u 'Y maxue, wmo X p-xomnaxmmo, Y CUEMMHO KOMNAKMHO 6 CHEMMHOT
cmenenu u X XY ne ncesdoxkomnarmmo. IIpocmparcmeo X7 cuémmo Komnaxmmo
05 1100020 T.

B |2] Takzke nocrasien, BCE emné oTKpbIThIil, Borpoc (Question 5.3), cyiecTByer
JI1 OJJHOPOJHOE IICEBIOKOMIIAKTHOE IPOCTPAHCTBO X , JI/I KOTOPOLIO IIPOU3BEeHUe
X x X He I1CeBIOKOMIIAKTHO.

B [8] jokasbiBaeTest, 9TO KOMIIAKTHBIE TTOJMHOKECTBA IKCTPEMATBHO HECBSI3-
Hoit Tpymmel Konednnl. Z. Frolik [6] mokasas, @ro ofHOPOJHBIE SKCTPEMATHHO
HeCBSI3Hble KOMIIAKTHBIC IIPOCTPAHCTBa KOHEYHbI. (OKa3blBaeTCd, KOMIAKTHDBIC
IIOJIMHOZKECTBa OJIHOPO/IHBIX 9KCTPEMAJIBHO HECBA3HBIX IPOCTPAHCTBA KOHEUHBI.
D10 peraer Bopockl 4.5.2 1 4.5.3 u3 [7]. D10 yrBepKICHIE TaKKe BHITEKACT 13
Teopembr 2(c) n3 [12]. Ilocmentee yTBep:KaeHne MOKHO YCHINTL: KOMIAKTHBIE
IIOJIMHOZKECTBa OJHOPOJHBIX IIOJIIPOCTPAHCTB TPETbeil CTEleHH SKCTPEMAasIbHO
HECBSI3HOI'O IIPOCTPAHCTBa KOHEUHBbI. ABTOPY HEM3BECTHO, MOYKHO JI YCJIUTH 3TO
yTBepzKJIeHue JJid 4eTBEPToil crenenn. B IpeaoiozkeHu KOHTUHIYM I'HIIOTE3bl
CH wmoxno. Bosee Toro, B npemmnonoxkennn CH KoMIIakTHBIE TOIMHOXKECTBA OJ1-
HODPOJIHBIX II0JIIIPOCTPAHCTB KOHEUHBIX CTelleHel SKCTPeMaJIbHO HEeCBS3HOIO IIPO-
crpaHcTBa KoHedHbI. B npennosioxkennn CH KoMIakTHBIE ITOMHOXKECTBa OJHO-
POJHBIX HOAIIPOCTPAHCTB CUETHOI CTelleHN SKCTPEMaJIbHO HECBA3HOI'O POCTPaH-
CTBa MeTpu3yeMbl. HenssecTHO, MOYKHO JI 9TO yTBEPrKJCHUE JOKA3aTh HAIBHO.

[Tosyueno ycuenue ynomsnyToit TeopeMbl PposKa: KOMIAKTHBIC OJHODPOJI-
HblE HOANPOCTPAHCTBA KOHEYHOI CTENeHN SKCTPEMaJsbHO HECBS3HOTO IIPOCTPaH-
CTBa KOHCUHBI.
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O dyHKTOpax 3HAKOIEPEMEHHBIX MEP

FO. B. CagoBanmunii

MexaHuko-mMaTeMaTuIecKnii haKyabTeT,
MockoBcknit rocyrapcTBennbiili yausepcuteT uMm. M. B. Jlomonocosa,
119991 Mockga, Jlenunckue ['opsor 1

E-mail: sadovnichiy.yu@gmail.com

Uccnenyiores dbyukroper US, rie € = (5, R, T, eIMHIYHOIO HIapa 3HaKOIIepe-
MEHHBIX OopesieBcKuX Mep. [lokazaHo, 9To 9Tu (PyHKTOPBI yIOBJIETBOPSIIOT TOJIb-
KO TPEM M3 CEMU CBOICTB HOPMAJIbHOCTH, MPUCYIINX (DYHKTOPAM BEPOSITHOCTHBIX
Mep. A uMeHHO, 5T (DYHKTOPHI IOYTH HEIPEPLIBHBI, COXPAHIIOT 0TOOParKeH!s
C IUIOTHBIMH OOpa3aMi H IepecedeHus] 3aMKHYTBIX IIOJMHOXKECTB HOPMaJIbHBIX
npocTpancTB. Kpome Toro, Jijisi 66CKOHETHOI'0 JIMCKPETHOI'O IPOCTPaHCTBa X I1pO-
crpancrBa U®(X) He yJIOBIETBOPSIIOT TEPBOil aKCHoMe CYETHOCTH U JlazkKe He siB-
JsitoTes npocrpancrBamu @pemre—Ypoicona. OTciojja BBITEKAET, ITO (PYHKTOPLI
U¢: Tych — Tych He coxpaHsIIOT TOIOJOTNYIECKIE BJIOYKEHUSI, BEC TOIOJIOTIYIE-
CKUX IIPOCTPAHCTB U UX METPU3yeMOCTh. TakykKe 9TH (DYHKTOPHI HE COXPAHSIIOT
COBEpIIIEHHBIE 0TOOparKeHust (Jazke MPOCTPAHCTB €O cuéTHOM 6azoit). Crout oT-
METUTH IIPH 9TOM, 4TO B Kareropuu Comp KOMIIAKTHBIX MPOCTPAHCTB (BYHKTOD
U= U’ = UE = U7 obunasaer BceMu CBOHCTBAMI HOPMAJILHOIO (DYHKTODA, 34
NCKJIIOUEHIEM CBOMCTB COXpPaHEHUsI IIyCTOIO MHOYKECTBa, TOYKU U IIPO0OPA30B.
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[Tonumanue TOIOJI0rNNA

B. B. ®uwiunmos

MexaHuKo-MaTeMaTniecKuii (haKyIbTeT,
MockoBcknit rocyzapctBennblilt yausepcureT uM. M. B. Jlomonocosa,
119991 Mocksa, Jlennnckue ['opwr 1

E-mail: vvfil@mech.math.msu.su

OcHoBHBIE TOHATHST 001l TOMOIOrMH CPOPMUPOBAJINCH B paMKax pa3BUTHUSI
MaTeMaTHdecKoro anaJjmnsa. U ceiivac s O0JbIIMHCTBA CUNTAIONNX ceOsT MaTe-
MaTHKaMHU BIIOJIHE JOCTATOYHO 3TOr0 YPOBHs BocupuaTust Tomosorun. Ho, cdop-
MYJIIPOBaHHbBIE B OOIEM BHJIE, 9T OCHOBHBIE ITOHSITHS OOIIEil TOIIOIOI I Hada Il
JKUTh U CAMOCTOSITE/IbHOM »KI3HBIO, HAXO/IUTDh IIPUJIOYKEHIS BHE T€X PaMOK, B KO-
TOPBIX OHU BO3HUKJIM. Hanbojiee OJiecTAIIM IPUMEPOM TAaKOI'O COPTA SIBJISIETCSI
cozjlanne pyHKIMOHAIBHOTO aHAJIM3A.

Kaxk iplit pasjies1 MaTeMaTHKI Ollpe/ie/isieTcsi HADOPOM MaTeMaTHIeCKIX CTPYK-
TYD, JIEXKAIIUX B €r0 OCHOBE. B ¢BOIO 0Uepe/ib, MaTeMaTudecKue CTPYKTYPbl paciia-
JIAI0TCsI, B OCHOBHOM, Ha, JIBa TUIIA. DTO KOMOMHATOPHO-aIredpanieckue u TOI0JI0-
ro-reoMeTpuyuecKre CTPYKTYPhL. AJiredpamdecKie CTPYKTYpPbl HAUAIH MeIIeHHO
BXOJIUTh B CO3HAHNE UYeJIOBEKa C TeX He3allaMsITHBIX BPeMeH, KOTJla HaIll IPeoK
MOHSJI, UTO OJWH ILIIOC OJINH 3TO y»Ke JBa. Il ecim reomerpuyeckue CTPyKTY-
PbI TaKKe NMEIOT IIyOOKYIO0 UCTOPUIO, TO TOIIOJOTHYECKHEe CTPYKTYPhI, KaK y2Ke
ObLIO CKa3aHO, ObLINM BBeIeHbl OTHOCUTEIbHO HEJIAaBHO B CBA3U C PA3BUTHEM Ma-
TeMaTu4Ieckoro aHajmsa. MoyKHO yBEPEHHO CKa3aTh, YTO €CTh ellé MHOT'O MeCT B
MaTeMaTHKe, I'/ie POJib TOIMOJOTMYeCKIX CBs3€eil [T0Ka He OCO3HAHA, He MOHSITA.

B nokiaje Oyjier pacckasaHo, KaK IMOHUMaHUE COOTBETCTBYIIEH TOIOJIOrnde-
CKOM CTPYKTYPbI IIO3BOJIIIO CBA3ATh B €JUHYIO IEIIOYKY TOIOJOrnYecKrne (pakThl
Teopun OOBIKHOBEHHBIX /I depeHIna IbHbIX YPaBHEHUI U TOCTPOUTH Ha 3TOi OC-
HOBE aKCUOMATUYCCKUI I10/IX0/T K U3JI02KEHUIO 3TOI TeOPUHU, JIEIKO ITOKPBHIBAIOIINIT
ypaBHEHUs C Pa3pbIBHON PaBOil YaCTbIO M ¢ MHOT'O3HAYHOI ITPaBOil 4aCThIO.

DT0 OHUMAaHIE ObLIO OCHOBAHO Ha OIIbITe pabOThl B TOIIOJIOIMU B pAMKaX KO-
abl A. B. Apxanreibckoro. Berpaborannoe Toria reoMeTpuieckoe BOCIPUSITIIE TO-
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[IOJIOTUYECKUX CTPYKTYP IMO3BOJWJIO YBHUJCTH, KaK U3 HUX, KaK U3 3JIEMCHTOB,
CKJIaJIBIBAETCS OICaHNe CTPOeHUs MPOCTPAHCTB pemennit. [Ipwaém camm coot-
BETCTBYIONIHE (DAKTHl TeOpUn OOBIKHOBEHHHBLIX JuddepeHnnaabHbIX ypaBHennii,
B OCHOBHOM, y2Ke ObLIN 3aMedeHbl Teopueil. O IHaKO TPOMO3JIKOCTb U HEIOJIHOTA
UX OIMHUCAHUS MENIaJd UX MPABIJILHOMY TMOHUMAHNIO. A MPaBUIBLHOE TOHUMAaHHE
JlaeT OCHOBY IIPOCTOI'0, OCHOBAHHOI'O Ha IPO3PavHOil ujiee, U3JI0KEHUST TEOPUH.

YBepeH, 9TO MOHNMAaHNE TOMOJOTNYeCKO CYTH U JIPYTUX pa3esoB MaTeMaTH-
KI emnié Oyjer onpene/isaTh ux passutue. Ho Jioau, KoTopble OyIyT 9TO JIeIaTh,
JIOJIPKHBI OYJIyT 3Hamb COOTBETCTBYIONINE Pa3Jie/ibl MATEMATUKN U NOHUMAMD,
YTO TAKOEe TOIOJIOTHS.

O npejcraBiaeHNN, CBA3aHHOM CO CKPYUYEHHBIM

1. B. ®ydaen

MexaHnKO-MaTeMaTHIecKuil (DaKyIbTeT,
MockoBckuii rocynapctBennbiii yausepcuteT uM. M. B. Jlomonocosa,
119991 Mocksa, Jlenunckue ['opor 1

E-mail: fufaevdv@rambler.ru

[Iycts G — j1oKaJIbHO KOMIIAKTHAsI TPYIIIA ¢ paBoii Mepoii Xaapa u §(z) — eé
Moy IsipHas pyHKIs. s nccieioBanus BHyTPEHHETo IpeJICTaB/IeHNS B LQ(G),

Y(@) f(y) = 6(x)" 2 f(z ya),

pa3yMHO paccMaTpUBaTh IIPeJICTABIEHIE

Bla1, x2) f(y) = 0(22) ' f (a7 yao)

rpytnsl G X G B L*(G). TlosToMy TakzKe pasyMHO PacCMOTDPETh IIpeJICTaB/IeHIe

B0(a1,2) f(y) = (2) ' f(d(ary o)

s ckpyuennoro npexacrasiaenns Y2(x)f(y) = 6(x)2f(op(x"Vyx), e ¢ —
HEKOTOPBIH aBToMOpdusM G. Creysd 3TuM MyTEM, cPOPMYyJIUpPYEM HEKOTOPBIE
pe3yJbTaThl jist 39

Teopema 1. Ecau vy ne sxsusasermno ¥°, mo 3 ne sxsusaermmo 3%.

O6o03naunM gepes ['(¢p) noarpyniy B G X G, sBISOILY0CsT TPAhUKOM ¢

[(¢) = {(h,¢(h)) : h € G}.
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Teopema 2. [Ipedcmasaenue v 2K6UBAACHMHO UHOYUUPOBAHHOMY NPEICTNAE-
AEHUIO indg(:;)G Ir(g), 2de 1pg) — edunuunoe npedcmasaenue epynno, I'(¢).

ITycrs p, — npasoe perynsiproe npejicrasienne G u [ F¥ da(y) — ero kamo-
HIYECKOE PA3JIOZKEHNe 10 PaKTOP-IPEACTABICHIAM.

Teopema 3. /[ xaorcdozo y cywecmsyem nenpusodumoe npedcmasserue iKY
epynnot G X G maxoe, wmo

1) oeparnuuenue KY na G X e axeusasermmo FY o ¢ u oepanuvernue KY na
e X G axsusarenmmuo Y, 2de FY — conpascénnoe x FY,

2) [y KYVda(y) — xanonuueckoe pasaoocenue no daxmop-npedcmasienuam
npedcmasaenus B°.

Boaee mozo, ecau npedcmasaenue p, umeem mun I, mo xascdoe FY umeem 6ud

5 y 5 y — -
(Lyog) x LY u [ (LYo @) x LY da(y) — wanonuueckoe pazaoocernue no daxmop
npedcmasaenuam npedcmasaerus 5°.

O JImHEHBIX roMeoMopPdgU3MaxX IPOCTPAHCTB
HEIIPEPBIBHBIX (DYHKITNM, 3aJaHHBIX Ha, PA3PEXKEHHDLIX
KOMIIaKTax C TOIIOJIOIUel II0TOYeYHON CXOJAMMOCTH
Ha BCIOJIY IIJIOTHBIX ITOJIMHOZKECTBaX

T. E. XMbLI€eBa

Mexanuko-maremarnydeckuii haxysibret, ToMCKMiT roCy/1apCTBEHHDBIN YHUBEPCUTET,

634050 Tomck, tip-1 Jlenmna 36

E-mail: tex2150Q@yandex.ru

[Tycts K — perynsipoe Torojiorndeckoe mpoctpanctso, A C K — Bcrony
mtorHoe nojmuozxkectso. Yepes Cp(A|K') obosnatduM juHeifHoe Mo/ IIpoCTPaHCTBO
B Cp(A), cocroamee u3 tex bynkmuit © € Cy(A), st KOTOPBIX T = Y|4 A1
nexoTopoit dbyukimn y € Cp(K). s JaHHBIX IPOCTPAHCTB HOJIyYeHa CJIeLyio-
masi TeopeMa.

Teopema 1. [Tycmv K — paspeorcennoiii komnaxm, A u B — 6c10dy naommnwie
nodmnoscecmsa 6 K maxue, wmo |K\ Al =m <n=|K\ B|, m,n € N. Tozda
npocmpancmea Cyp(A|K) u Cp(B|K) ne asaaomea AuHEtHo 20MeoMOPPHHIMU.

Iycrs s = [[2; Ri, tie B = R it Becex @ € Nuc C s (¢g C 8) —
TIOJIIPOCTPAHCTBA, BCEX CXOAAMNXCA (K HYJI0) HOCIeI0BATEILHOCTEI!.
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CrnencrBue 2. [Ipocmparcmea ¢ u ¢ X ... X ¢, 2de n > 1, nezcomeomoppmot.
n
CaenctBue 3. [Ipocmpancmsa ¢y u ¢ He ABAAOMCA SUHETHO 20MEOMOPPHDI-
MU, HO MPOCMPAHCMBA Co X C U C NUHETHO 20MEOMOPHHDL.

CrnencrBue 4. [Ipocmparcmeo ¢ donosHisemo He 6KAAGIDBAEMCA 8 NPOCTPAH-
CMBO Cy, HO NPOCMPAHCMNBO Co DONOAHAEMO BKAAOBIBAEMCA 6 C.

VTBep2KJIeHIe O TOM, UTO IIPOCTPAHCTBA C U €y HE SIBJISIIOTCA JIUHEHHO IOMeo-
mMopdHbIMU, ObLIO JloKasaHo B crarke [T. Dobrowolski, W. Marciszewski, Fund.
Math., 148(1) (1995)].

CTpyKTypa HEKOTOPBIX IOJMHOYKECTB IIPOCTPaAHCTBA
MJIEMITIOTEHTHBIX BEPOATHOCTHBIX MeEP

X. ®@. Xoarypaesn, A. A. 3auToB

TalmKkeHTCKUil THCTUTYT MHXKEHEPOB UPPUTAINU U MEXaHU3aIluU CeJIbCKOIO X03siicTRa,
V36ekucran, 100000 Tamkent, yia. Kaper Husizosa 39 (nepsbiii aBrop)

Kadenpa maremaTnkn n ecTeCTBEHHBIX HAYK,
TamkenTckuit apXuTEeKTyPHO-CTPOUTE/IHLHBIN HHCTUTYT,
Va6ekucran, 100011 Tamkent, yi. HaBou 13 (BTOpoii aBTop)

E-mail: xolsaid_81@mail.ru, adilbek_zaitovOmail.ru

OrmpefiesieHre POCTPAHCTBA WIEMIIOTEHTHBIX BeposaTHOCTHBIX Mep [(X) Ha
KOMIIAKTHOM Xayc10poBoM mpoctpancTse X u nojnpocrpanctsa I, (X) C 1(X)
MJIEMIIOTEHTHBIX BEPOSITHOCTHBLIX Mep Ha X ¢ KOHEYHBIM HOCHTEIEM JIaHO B pabo-
te A.A. Baurosa u A. . Ummerosa, mybsinkyemoil B HacTosieM cOOpHEKe (Ha
c. 74-75).

3aMeruM, 4TO eCIH fi — WJEMIIOTEHTHas BEPOSTHOCTHAs Mepa ¢ KOHEUHBIM
HocureseM supp = {1, %2,..., T}, TO [ MOXKHO TPEJICTABUTH B BUJIE (i =
A © 0y, BAy Oy, B DA © 0y, €IMHCTBEHHBIM 00pazoM, e —oo < \; < 0,
1 =1,2,....k, M1 B A D --- D A\ = 0. 3nech, Kak 00bIuHO, 1t & € X Uepes
d, oboznaven dyukimonans va C(X), onpenenénnbit hopmysoit 0,(p) = (z),
¢ € C(X), n HaspiBaeMblit mepoti JJupaka, cocpedomovwennoti 6 mowke x.

s kommakta X u Herycroro Muoxkectsa A C X 110/102KuM

Sr(A) ={a € I(X):suppan A+#0D}.

[To moctpoenuio, Britouenne A C B Bieder S;(A) C Si(B).
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Ilpennoxkenune 1. /[aa komnaxma X, 6cAK020 €20 0MKEPHIMO20 NOOMHOICE-
cmea U u ¢pynkmopa I umeem mecmo

I(X\U) =1(X)\ S51(U).
CnencrBue 1. /lasa ecaxozo omxpwvimozo nodmmoscecmsa U rwomnaxma X

mmoorcecmeo Sp(U) omrpwmo 6 1(X).

ITpennoxkenune 2. /[aa 3amxnymozo nodmmoocecmsa A womnarxma X mHo-
orcecmeo Sp(A) samrrymo 6 1(X).

Teopema 1. Jlas npouseosvhozo Henycmozo 3amknymozo noommoscecmsa A
komnaxma X , 2de A # X, nodnpocmpancmeo 1(A) ecmov Z-mnoorcecmeo 6 1(X).

Teopema 2. /lasa npouszeonvrozo komnarma X u kasncdozo HAMYPAALHOZ0
n € N, n < |X]|, nodnpocmpancmeso I,,(X) aeasemea Z-mnoocecmeom 6 I(X).

Crenosaresnbro, 1,(X) saBisieTcst 0-Z-MHOKECTBOM.

Teopema 3. Jlas npoussosvhozo nenycmozo muoscecmea A 6 X nodmmnooice-
emeo S7(A) = {p € I[(X) : ANsupp pu # 0} maz-plus evinyr.io.

ITpumep 1. Illycts n = {0,1,2,...,n — 1} — n-TovYevdHOE IUCKPETHOE MPO-
crpancrBo. g Besgkoro nmommuoxkecrsa A C n mHOKecTBO S7(A) OTKPBITO B
I'(n). B mom unciie nyst kazkioro @ € n muoxkectBo Sy({i}) orkpniro. meem

Si({i}) = T\ T({0,1,2, i —1,i+1,..;n—1}).

[lepeceuenne muoxects Sy({i}) ects BHyTpennocTs 6ukomakTa I (n), T.e.

h Sr({i}) =Int I (n).

Ormernm, ato jist mogaMuoxkects A u B kommakra X umeer mecto S7(ANB) C
S1(A) N S;(B). Ho obparnoe He BepHO.

HeitcrBurensho, pacemorpum MHOKecTBa A = {0, 1,2} u B = {1,2,3}. Toraa
IIST [0 = A\ © 09 D Ag ® 03, tie —00 < A, A < 0w Ay @ Ay = 0, umeem
p € Si(A)NS(B), vo u ¢ Si(AN B).

Teopema 4. /s 6carozo 3amknymozo nodmmoocecmea A Komnarma X muo-
orcecmeo Sp(A) ecmov Gg-mmoocecmeo 6 1(X).

CaencrBue 2. Jlaa omxpvmozo nodmmoocecmea U xomnaxma X mmoorce-
cmeo S1(U) asasemea Fy-mmoorcecmeonm.
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[Iycrs (M, g) — riajikoe puMaHOBO MHOrOOOpasne pasMepHOCTH 7 ¢ PUMAHO-
BOI MeTpuKoit g. Kitaccuueckoii 3aj1adeii puMaHOBOIT T€OMETPUN SABJISIETC N3y e~
Hue rpyibl n3oMerpuii. ['pynna uzomerpuit G(M) pumanoBa MHOTOOOpa3us Ha
cebst obpaszyer moarpymy rpymisl Diff (M) Beex muddeomopdbusmos M Ha ce-
0s1. Kax mokazasu S. B. Myers, N. Steenrod |Ann. Math., 1939|, rpymma G(M) ¢
KOMITAKTHO-OTKPBITOI TOIOJIOTHEN NMeeT eCTECTBEHHYIO CTPYKTYpY I'pynibl JIn.

[Iyctb M u N — riajkue MHOroobpasusi pa3MepHOCTH N, Ha KOTOPBIX 3aJIaHbl
raajikie k-Mepuble cioennst Fy u Fy coorBercTBenno (37ech 0 < k < n).

Onpenenenne 1. ludpdbeomopdbuszm ¢: M — N nHazbiBaeTcs guddeomop-
hbu3MOM, COXpaHSIONIUM CIoeHre, ecyin 00pas3 (L) moboro ciost L, cioerust Fy
SIBJISIETCSI CJIOEM CJlIoeHus1 Fo.

B cinyuae, korna M = N u F} = F5, roBopat o jauddeomopdusme cJI0EHOTO
muoroobpasust (M, F).

Omnpenenenue 2. Jludpdeomopdusm ¢: M — M cioénoro MHOrooOpasus Ha-
3bIBAETCST USOMEMPUeEts cAoéHo2o mrozoobpasus (M, F), eciu cyxenue p: L, —
(L) siBIIsIeTCsT m30MeTpHeit.

O6oznaunm depe3 G(M) mHO)KeCTBO Beex m3omerpuii Kiacca C' cyioéHOro
muoroobpasust (M, F'), rie r > 0. MuoxkectBo G (M) siBisieTcst OAMHOZKECTBOM
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mMHOKecTBa Beex fauddeomopdusmon Diff (M) muoroobpasust M na cebsi. Borpo-
cy 00 M30METPHUIECKIX OTOOpayKeHUsAX CJIOCHHI ToCBsienbl paboter [A. 9. Hap-
manoB, JI. A. Ckopoboraros, /Jlokaadvs Axad. Hayx Pecn. Yabexucman, 2004,
|1. A. Ckopoboraros, Vabexcrkuii mamem. orcypran, 2000]. B stux paborax usy-
YeHBI BOIIPOCHI, MIPU KAKUX YCJIOBHUAX BCAKAsT N30METPUSI CJIOCHUST SIBJISETCS W30~
MeTpueii MHOTOOOpas3us.

B nacrosiieit pabore ucceyercs rpymma Gp(M) ¢ KOMIAKTHO-OTKPBITOI TO-
oJIOTHeil 1 TomoJorneii, Koropasi OyJIeT BBejleHa HUKe. DTa, TOMOJIOIHSA 3aBUCUT
oT cjioeHust F' u coBIiajiaeT ¢ KOMIIAaKTHO-OTKPBITO# Tomoiorueit, Korjaa F' sBiser-
Csl N-MEpPHBIM CJIoeHHeM. Eciim Kopa3zMepHOCTh CJI0eHUsT PaBHA 7, TO CXOJUMOCTD
B 9TOI TOMOJIOI'MHU COBIAJIACT C MOTOYCTHON CXOMMOCTBIO.

[Tycts { K} — cemeiicTBO Bcex KOMIIAKTHBIX MHOYKECTB, TJe Kaxkjoe K, siB-
JISIeTCsT TOJIMHOKECTBOM HeKoToporo ciost ' u mycrs {Ug} — cemeiicTBO Beex
OTKPBITHIX moaMHOKecTB M. Pacemorpum st Kazkaoii napbl Ky C L, 1 11060-
ro U coBokymHOCTS Beex otobpakennit f € Gp(M), ns xoropeix f(Ky) C Up.
DTy COBOKYITHOCTH OTOOparkeHmit OyaemM 0603HadaTh depes

K0, Ul = {f: M — M| f(K)) C Ug}.

910 cemeiicTBo obpasyer 6a3y HEKOTOPOIl TOIOJIOIMHU, KOTOPYIO HAa30BEM F-KOM-
MAKTHO-OTKPBITOH TOMOJIOTHEH  (CJI0EHON KOMIIAKTHO-OTKPBITON  TOTOJIOTHE;] ).
YCTaHOBJIEHO, YTO UMEET MECTO

Teopema 1. ITycmv M — 2aadkoe ca3Hoe MH02000pa3ue KOHEYHOT pasmep-
nocmu. Tozda epynna ezo zomeomoppusmos Homeo(M) sasasemes monosoeu-
ueckotl 2pynnoti OMHOCUMEADHO KOMNAKMHO-0mEPumot monosozuu. B wacmmo-
cmu, nodepynnu, DIff (M), Gp(M) maxoce a6as0mes monosoeudeckumu 2pyn-
namu 6 Mot MonoAoUL.

Jlemma 2. [Tycmo M u B — aaadkue pumaroso, mmo2000pasue pazmeprocmed
n u m coomsemcmeenno, F' — caroenue, nopoostcdénnoe cyomepcued f: M — B.
Tozda epynna Gr(M) codepotcum omobpasicenus, Komopovie He ABAAOMCA Ae-
mernmamu epynno, usomemputs G(M) pumanosa mmnozoobpasus (M, g).

Teopema 2. I'pynna Gp(M) asasemca monosoeuueckot epynnot ¢ F-xom-
NAKMHO-0MKEPLIMOU MONON02UET.
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