Pressure-induced reactions in organic materials a new insight for evolution of bio-related molecules

Hiroyuki Kagi, Ayako Shinozaki and Chikako Fujimoto Geochemical Research Center, The University of Tokyo

Collaborating with

- K. Komatsu and H. Gotou (University of Tokyo)
- K. Mimura (Nagoya University)
- T. Inoue (GRC, Ehime University)

The motivation of our study

To investigate chemical evolution in the interior of icy planets

Recently, we study behaviors of organic molecules under high pressures.

1. Pressure-induced reactions on benzene at room temperature.

Shinozaki et al. (2014) J. Chem. Phys.

2. Pressure-induced oligomerization of alanine at room temperature. Fujimoto et al. (2015) *Chem. Comm.*

Benzene (C₆H₆)

- Simplest aromatic hydrocarbon
- •Delocalized electrons in the π orbital

Benzene and/or PAH (polycyclic aromatic hydrocarbons)

- ✓ Martian meteorite (e.g. Steele et al. 2012)
- ✓ Atmosphere of Jupiter (e.g. Kim et al. 1985)
- ✓ Atmosphere of Titans (e.g. Coustenis et al. 2007)

Kim et al. 1985

Phase diagrams of benzene

At room temperature, benzene solidifies at \sim 0.1 GPa. and transforms to the amorphous state at 23 GPa.

Pressure-induced polymerization of benzene

Theoretical calculation

Approaching the neighbor benzene molecules with compression.

Engelke Dimers Refs. 23-25	C _s	D _{2H}	C _{2H}	C _{2V}	D _{6H}
Energy Barrier (eV/pair)	3.8	5.5	6.7	5.5	11.5
Reaction Distance (Å)	2.1	2.75	2.3	2.1	1.75

Root and Gupta (2009)

120
110
100
90
70
80
1, 2, +2, syn
2, 2, +2, anti
30
20

Root and Gupta (2009)

Andrey et al. (2011)

Benzene-derived carbon nanothreads

Compression of benzene at 20 GPa and room temperature

Fitzgibbons et al., 2015

Polymerization of benzene by impact shock

High pressure and high temperature generated in short time range

GC-MS analysis on the recovered samples

Run products from the shock experiments.

- Naphthalene (C₂H₈)
- Biphenyl (C₁₂H₁₀)
- Terphenyl (C₁₈H₁₄)
- Ethylbenzene
- Styrene
- Phenylacetylene
- Metylbipheyl
- MethInaphtalene

Mimura, 1995

etc...

To observe polymerization of benzene under static high-pressure condition behind the phase diagram

We need to detect trace polymerized products

DAC→ double-toroidal anvils

XRD, Raman, IR → GC-MS analysis on

recovered samples

High pressure Experiments

Starting material

distilled liquid benzene

High pressure apparatus

double toroidal anvils, φ 4mm

high-pressure experiments at RT

MAX-III (@PF, KEK)

CAPRICON (@ISSP, U Tokyo)

Sintered diamond

Run list

Run no.	Load (ton)	Pressure (GPa)	preservation time (hour)
1	40	5	1
2	40	5	45
3	80	10	1
4	80	10	45
5	103	13	1
6	130	16	1
7	130	16	45

All experiments were conducted at room temperature.

Products recovered from high pressure experiments on benzene at 16 GPa (1 hour)

 $C_{10}H_8$ (naphthalene)

 $10^{-5} \sim 10^{-4}$

 $C_{12}H_{10}$

10-6~10-5

 $C_{18}H_{14}$ (terphenyl)

enyl

 $C_{12}H_{10}$ (biphenyl)

 $10^{-5} \sim 10^{-4}$

Missing of PAHs with side chains observed from shock-compression.

Pyrolysis products at high temperature?

etc.

inyl \sim 10⁻⁶

Shinozaki et al., 2014, J Chem. Phys.

Pressure dependence of amount of the run products Preservation time:

Preservation time: 1hour

The yields of reaction products increase with increasing pressure.

Relation between amount of the run products and preservation time

Relation between phase transition of benzene and the polymerization

- Around 11 GPa
 Phase transition of benzene
 (Phase III→Phase III')
- •10 \sim 13 GPa polymerization of benzene

Phase transition \rightarrow polymerization? $_{100}$

Polymerization→phase transition?

Cancell et al. 1993

Summary 1

- ✓ High-pressure experiments on benzene were conducted up to 16 GPa at room temperature using an opposed-anvil type pressure apparatus.
- ✓ The samples recovered above 13 GPa contained several isomers of benzene dimers, biphenyl, naphthalene, and isomers of terphenyl.
- ✓ Amount of the polymerized products increased with increasing pressure up to 16 GPa, while benzene still remained. The polymerization can be a precursory reaction of the amorphization.
- ✓ Run products from the static compression at room temperature were notably different from those from the shock compression experiments. Pressure-induced polymerization of benzene .

Pressure-induced oligomerization of Alanine at room temperature

Alanine (a kind of amino acid)

Peptization (condensation) of amino acids: A step to synthesize more complex bio-molecules

$$\begin{array}{c|c} O \\ \\ OH \end{array} + \begin{array}{c|c} O \\ \\ OH \end{array} + \begin{array}{c|c} O \\ \\ OH \end{array} + \begin{array}{c|c} Peptidization \\ \\ H_2O \end{array} + \begin{array}{c|c} O \\ \\ H_2O \end{array} + \begin{array}{c|c} O \\ \\ H \end{array} + \begin{array}{c|c} O \\ \\ OH \end{array} + \begin{array}{c|c} OH \\ \\ \\ OH \end{array} + \begin{array}{c|c} OH \\ \\ \\ OH \end{array} + \begin{array}{c|c} OH \\ \\ \\$$

- Amino acids peptidize with dehydration.
- Peptization under prebiotic condition may give a clue to the origin of life.

Peptization under prebiotic condition

- Hydrothermal condition: Formation of glycine trimer (Imai and Honda, 2010)
- High temperature: Formation of dipeptide (Fox and Harada, 1958)
- High energy H⁺, Ar⁺, N⁺: Formation of dipeptide (Simakov et al., 1997; Wang et al., 2007)

Pressure-induced peptization

- Static Pressure and high temperature (1.0 5.5 GPa, 180 400 °C): Formation of glycine and alanine pentamer (0take et al., 2011)
- Shock compression (1.8 − 26.3 GPa, 200 − 1170 °C): Formation of glycine trimer (Sugahara and Mimura, 2014)

Hydrothermal vent

Enceladus

Comet Hale-Bopp

Previous studies on peptidization were conducted at high temperatures, high-energy irradiation, anhydrous conditions (because the reaction is a dehydration reaction).

Verifying peptide formation at high pressure and mild temperature

A new possibility for chemical evolution of amino acids and peptides could be proposed.

High-Pressure experiments

Starting material: L-Alanine powder (\sim 10 mg)

+Alanine-saturated solution

Temperature: 25 ℃

Pressures: 5, 7, 9, 11 GPa

Duration: 1 hour

Ala-Ala (dimer), Ala-Ala (trimer) vs. P

Oligomerization of alanine under the conditions of Coexistence of water, Room temperature, High pressure

- Starting material = Alanine powder + its saturated aqueous solution (with H₂O)
- Under the *P-T* conditions (5-11 GPa, 25 °C), water exists as ice VII (high-pressure phase of ice).
- Possible existence of Ice VII inside of icy planets (Kubo et al., 2009)

Our study propose

Possibility of chemical evolution of acid acids inside of icy planets

Phase diagram of ice (Lobban et al., 1998)

Enceladus (from NASA's web site)

Summary 2

- High-pressure experiments (up to 11 GPa) at room temperature demonstrated the formation of the dimer (Ala-Ala) and trimer (Ala-Ala-Ala) from Alanine powder with its saturated solution.
- The present results suggest a possibility of oligomerization of amino acids in the interior of icy planets.
- The oligomerization mechanism? The pressure-induced oligomerization occurs at anhydrous condition? (Our preliminary results show that the reaction yields in a dry condition are much lower.)
- In future, in-situ observations are required at high pressure, because some of the products might be meta-stable and could not be detected from recovered samples.