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Diamonds from terrestrial impact crater'

Sudbury basin . Rise crater Popigai crater
(Canada) . (Germany) (RUSSia)

Schmitt et al. (2005) Hough'tal. (1995) Langenhorst et al. (1999)

Impact diamond from Sudbury basin




Popigai crater located in the north central Siberia
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eological map of the Popigai impact structure
(Deutsch et al., 2000, modified after Masaitis (1998)




Impact diamonds from Popigai crater

» Found in tagamit & suevite

» Mostly show tabular shapes
— single crystal graphite origin?

» Show strong birefringence
— due to internal strains?

» Associated with Lonsdaleite
+ Graphite

— ~in _ .
100 pm B > Details of microtexture and
Tabular diamond crystal showing strong birefringence Crystal Iographic featu res are

(Masaitis, 1997) _
still unknown.

Purpose of this study

To investigate the microtexture and
B o | crystallographic nature of Popigai
S - - iImpact diamonds and understand

. = - - '
_ MR 200 nm Koeberl et al. (1997) i .
TEM image and electron diffraction of impact diamond the formation mechanism.




Analytical methods

XRD: Rigaku RAPID IV
(Mo-Ka, A =0.71073A)
Beam size: $100 pm
@D in

@ in transmission geometry

IP detector

Raman:Renishaw RS-SYS 1000

Ar+ laser (A=514.5nm)
FIB: JEOL, JEM-9310FIB Crossf,-slection
OllSs
TEM: JEOL, JEM-2010 (200 kV) - (10X 7%0.1 pm)
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XRD analysis of Popigal iImpact diamonds
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v' Transparent samples consist of
diamond + lonsdaleite (smaller).

v Opaque samples consist mainly
of D + L and but also contain
graphite.




2D XRD patterns (transmisssion) of Popigal diamonds

0%

Surface
normal

v All samples show various degrees of preferred orientation (LPO).

v Some samples show strong [111] LPO along the sample surface
normal in which lonsdaleite [100]* & graphite [002] are coaxial.




2D XRD patterns (transmission) of Popigai diamonds

#06 sample

L 100d=2.18

2D XRD pattern of #06 sample
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TEM observation on cross-section folls from #06
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v Shows two LPO patterns, one of which
corresponds to sample surface
normal.

aASCESECMIRUR DIRCLIURGIMLIBN | PO directions do not correspond to




Microtexture of Popigal impact diamond (#06)
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v' Diamond [111] // lonsdaleite [100]* coaxial relation is observed in
the both LPO directions, implying that the transformation is not a
simple martensitic process in a single crystal framework.




Crystallite (grain) size of the constituent grains

Koeberl et al.

v Individual grains are 5-30 nm size and show interference fringes,
which probably derived from nano-kinks of diamond (111) lattice.




Fragmentation of the initial graphite source
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attern in some Popigal diamonds
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stal like pattern in Popigal diamonds
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Crystallization mechanism of Popigal iImpact diamonds
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P-T conditions for the Popigal diamond formation
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v The P-T condition required for diamond formation from single-crystalline
graphite is >15-20 GPa and >1500°C, according to static high P-T exp.

v' The estimated shock pressure, 35-50 GPa (Masaitis, 1998) for the Popigai
diamond formation is likely overestimated.




Summary

Impact diamonds from the Popigai crater consist mostly of
nanocrystalline diamond (5-30 nm size) and of smaller
amounts of lonsdaleite == graphite.

The three carbon phases are basically arranged in a coaxial
relation, suggesting that the martensitic process |Is
responsible for the formation mechanism.

Many samples show distinct lattice preferred orientations,
which are created through martensitic transformation of
single crystalline graphite involving its local fragmentation
Into single-crystal domains of lonsdaleite-diamond.

Microtexture of Popigai diamonds is well comparable to
synthetic NPD having ultra-high hardness, and therefore they
could be :

The previously suggested impact pressure (35-50 GPa) for
Popigai diamond formation is likely overestimated. The
revised shock P-T might be 15-20 GPa and 1500-2500°C.




