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Impact diamonds from Popigai crater
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 Found in tagamit & suevite

 Mostly show tabular shapes
→ single crystal graphite origin?

 Show strong birefringence
→ due to internal strains?

 Associated with Lonsdaleite
± Graphite

 Details of microtexture and
crystallographic features are
still unknown.

TEM image and electron diffraction of impact diamond

Koeberl et al. (1997)

Tabular diamond crystal showing strong birefringence
（Masaitis, 1997）
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Koeberl et al. (1997)

To investigate the microtexture and
crystallographic nature of Popigai
impact diamonds and understand
the formation mechanism.

Purpose of this study
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2D pattern in reflection geometry
#01

 Transparent samples consist of
diamond + lonsdaleite (smaller).

 Opaque samples consist mainly
of D + L and but also contain
graphite.
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diamond + lonsdaleite (smaller).

 Opaque samples consist mainly
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2D XRD patterns (transmisssion) of Popigai diamonds2D XRD patterns (transmisssion) of Popigai diamonds
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 All samples show various degrees of preferred orientation (LPO).

 Some samples show strong [111] LPO along the sample surface 
normal in which lonsdaleite [100]* & graphite [002] are coaxial.
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2D XRD patterns (transmission) of Popigai diamonds2D XRD patterns (transmission) of Popigai diamonds

#06 sample

Martensitic phase transformation of 
graphite → lonsdaleite → diamond

Preferred orientation and coaxial
relations suggest martensitic formation
Preferred orientation and coaxial
relations suggest martensitic formation
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TEM observation on cross-section foils from #06 
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 Shows two LPO patterns, one of which  
corresponds to sample surface 
normal.

 LPO directions do not correspond to 
lineation created by aligned crystals.
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Microtexture of Popigai impact diamond (#06)
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 Diamond [111] // lonsdaleite [100]* coaxial relation is observed in
the both LPO directions, implying that the transformation is not a
simple martensitic process in a single crystal framework.
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Crystallite (grain) size of the constituent grains

 Individual grains are 5-30 nm size and show interference fringes, 
which probably derived from nano-kinks of diamond (111) lattice.

 Individual grains are 5-30 nm size and show interference fringes, 
which probably derived from nano-kinks of diamond (111) lattice.
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Koeberl et al. (1997)



Impact
shock Transformation

to diamond

Fragmentation
G [001] D [111]

D 111

L 100

200 nm

Main
LPO

2nd
LPO

Lineation

Fragmentation of the initial graphite source

#05

Sample surface

Main
LPO

2nd
LPO

Graphite single crystal
FIB cross-section

Sample surface
normal

D [111]



D [110] projectionD [110] projection（twinned）
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L [001] projectionD [112] projection

Single-crystal like pattern in some Popigai diamonds

Koeberl et al. (1997)
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Popigai diamond formation?

P-T conditions for the Popigai diamond formationP-T conditions for the Popigai diamond formation
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 The P-T condition required for diamond formation from single-crystalline
graphite is >15-20 GPa and >1500℃, according to static high P-T exp.

 The estimated shock pressure, 35-50 GPa (Masaitis, 1998) for the Popigai
diamond formation is likely overestimated.
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Summary

 Impact diamonds from the Popigai crater consist mostly of
nanocrystalline diamond (5-30 nm size) and of smaller
amounts of lonsdaleite ± graphite.

 The three carbon phases are basically arranged in a coaxial
relation, suggesting that the martensitic process is
responsible for the formation mechanism.

 Many samples show distinct lattice preferred orientations,
which are created through martensitic transformation of
single crystalline graphite involving its local fragmentation
into single-crystal domains of lonsdaleite-diamond.

 Microtexture of Popigai diamonds is well comparable to
synthetic NPD having ultra-high hardness, and therefore they
could be a promising source for industrial application.

 The previously suggested impact pressure (35-50 GPa) for
Popigai diamond formation is likely overestimated. The
revised shock P-T might be 15-20 GPa and 1500-2500℃.


