The stability and water solubility of high pressure hydrous and nominally anhydrous minerals in the mantle Toru Inoue (GRC, Ehime Univ.)

Collaborators: Sho Kakizawa¹, Nao Cai¹, Kiyoshi Fujino¹, Takahiro Kuribayashi², Toshiro Nagase², Steeve Gréaux¹, Yuji Higo³, Naoya Sakamoto⁴, Hisayoshi Yurimoto⁴ 1 Ehime Univ., 2 Tohoku Univ., 3 JASRI, 4 Hokkaido Univ. Aluminous new phase

hydrous bridgmanite (perovskite) (23 A phase) 10 GPa, 1000 °C, 8h Chon Fluid New Pv phA

Cai et al. I Mg₁₁Al₂Si₄O₁₆(OH)₁₂ I H₂O ~12 wt% (2015)

I H₂O ~0.8 wt%

Inoue et al. (in prep.)

Discovery of hydrous ringwoodite in diamond inclusion (Pearson et al.,2014)

Extended Data Figure 1 | Image of JUc29 diamond and the ringwooditewalstromite inclusion. a, Monochrome image of diamond JUc29 taken under incident light, with the ringwoodite-walstromite inclusion pair highlighted by a red square. The irregular shape and hexagonal pits in the diamond are signs of significant resonption. b, Enlarged view of the area of the host diamond (rotated 90° rdative to a) containing the ringwoodite-walstromite inclusion pair. The shadow behind the rectangular area outlining the inclusion pair is probably a stress fracture in the diamond.

a, Onpolarized F11K spectra for fingwoodife inclusion in diamond 10229between 2,200 and 3,900 cm⁻¹. The two spectra were measured at ~90° degrees to each other and are unsmoothed, but were corrected for a background that includes the intrinsic response of the host diamond. Water contents calculated by integration of these two spectra are between 1.4 and 1.5 wt% (see Methods section on FTIR). **b**, Reference spectra for hydrous Fe-bearing ringwoodite (Mg# 89) containing ~1 wt% H₂O (ref. 27).

Hydrous peridotite (MgO-SiO₂-H₂O system)

Atg: antigorite $Mg_6Si_4O_{10}(OH)_8$ $H_2O= 13 \text{ wt\%}$ A: phase A $Mg_7Si_2H_6O_{14}$ $H_2O= 11.8 \text{ wt\%}$ sB: superhydrous B $Mg_{10}Si_3H_4O_{18}$ $H_2O= 5.8 \text{ wt\%}$ D: phase D $MgSi_2H_2O_6$ $H_2O= 10.1 \text{ wt\%}$ H: phase H $MgSiH_2O_4$ $H_2O= 15.2 \text{ wt\%}$

Nishi et al. (2014)

```
Br: brucite Mg(OH)_2

H_2O= 31 \text{ wt\%}

\delta-AlOOH AlOOH

H_2O= 15 \text{ wt\%}
```

Our group has been conducting the study for the stability and water solubility of hydrous and nominally anhydrous minerals, and *the recent target is the effect of Al, trivalent cation*. In this process, we found the new Al-bearing hydrous phase (23 Å phase) and Al-bearing hydrous bridgmanite.

Today's topic

 Discovery of new Al-bearing hydrous phase (23 Å phase) stable in upper mantle condition (Cai et al., 2015)
 Discovery of Al-bearing hydrous bridgmanite stable in lower mantle condition (Inoue et al., in prep.)

Al-bearing new hydrous phase (23 Å phase) in upper mantle condition

(Cai et al., 2015)

Al-bearing new hydrous phase (23 Å phase)

Starting composition: Mg₁₁Al₂Si₄O₁₅(OH)₁₄ P&T: 10 GPa, 1000 °C

Fitting the XRD pattern by assuming a hexagonal structure

Chemical Composition (wt%)

MgO	Al ₂ O ₃	SiO ₂	H ₂ O	Total
49.84	11.75	26.46	11.95	100

TEM observation

Lattice parameter

	new phase	phase A*
а	5.1972(9) Å	7.8603(2)
С	22.991(4) Å	9.5730(2)
V	537.8(2) Å ³	512.22
ρ	2.760	2.959

*Horiuchi et al., 1979

TEM observation

hhl spots

 $h \overline{h} l$ spots

Mirror planes exist at every 30°.

- Hexagonal structure;
- *hhl* not extinct;
- $h\overline{h}l$ (l = 2n+1) extinct;
- 00*l* (*l* = 2n+1) extinct;
- Mirror planes.

Possible space group: $P\overline{6}c^{2}$, $P6_{3}cm$, or $P6_{3}/mcm$ a = 5.23(6) Å, c = 23.2(2) Å

Al-bearing hydrous bridgmanite stable in lower mantle condition

(Inoue et al., in prep.)

This PPT was modified from my oral presentation because before publication.

Chemical composition of Bridgmanite

 Table. Chemical composition of Perovskite (mol)

P(GPa)	25	26	26		
H ₂ O(wt%)	18.7	18.7	11.3		
Mg	0.99	1	0.99		
Al	0.09	0.09	0.11		
Si	0.94	0.93	0.93		
Cation sum	2.02	2.02	2.02		
measured number	8	3	7		
(T=1600°C) Oxygen=3					
<u>No Mg deficit</u>					

Al incorporates into perovskite by the substitution of $Mg^{2+} + Si^{4+} \Leftrightarrow 2Al^{3+}$ in anhydrous condition, but in hydrous condition, only Si deficit is observed.

Al−perovskite in DRY condition (1600℃) 25 GPa: Mg_{0.96}Al_{0.08}Si_{0.96}O₃ 26 GPa: Mg_{0.93}Al_{0.14}Si_{0.93}O₃ DRY (Akaogi et al., 2002)

Fig. 3. Phase boundaries in the system $Mg_4Si_4O_{12}-Mg_3Al_2Si_3O_{12}$ at 1600 °C up to 50 GPa determined by Kubo and Akaogi (2000). Abbreviations are the same as in Fig. 1.

H₂O measurement by SIMS

Hydrous bridgmanite

perovskite(MgSiO₃) $Mg_{0.97}Si_{0.92}Al_{0.09}H_{0.09}O_3$

Single crystal X-ray diffraction study

Automated four-circle diffractometer at BL-10A, PF, KEK

Structure refinement

- 1) SHELXL97 with WinGX software was used for all structural refinements (Scheldrick and Schneider 1997; Farrugia 1999).
- 2) Initial structural parameters of non-hydrogen atoms were taken from Horiuchi et al. (1987).
- 3) The averaged scattering values for dodecahedral (A) and octahedral (B) sites were modeled by the scattering factor of Mg²⁺ for A-site and that of Si⁴⁺ for B-site, respectively.
- 4) After the values were refined, the distributions of Mg, Al and Si at both Aand B-sites were evaluated by the optimization to minimize the summation of the squared residuals between the calculated and observed data such as <u>the site scattering power (electron number) of each site</u>, <u>total amount of each atom in the unit cell</u>, and <u>the mean bond valence</u> <u>distance</u> in each polyhedron within the restrictions of its bulk chemical formula.

Rietveld analysis for neutron diffraction study

Slit size: 5 x 5 mm Measurement time: 5 hr

Z-Rietveld program was used.

The above analysis was done by Pv: phase D: periclase = 90:8:2. Still small amount of the other phase (δ -AlOOH) may exist.

Sound velocity measurement under high P-T in SPring-8

Ultrasonic velocity (Vp, Vs) measurement

350

300

250

200

150

100

50

20.000

30.000

40.000

50,000

60.000

70.000

80.000

hydrous bridgmanite:

$S2961_30: 19.7 GPa, 27^{\circ}C$ NaCl + Au + BN $\Rightarrow P calc.$

hydrous perovskite \Rightarrow phase identification, lattice parameters and unit cell volume at P,T \Rightarrow EoS

PVT of hydrous bridgmanite

P

Summary

1) New Al-bearing hydrous phase (23 Å phase) was found in chlorite composition in upper mantle condition. This structure is very unique, which shows elongated structure to c-direction.

2) Al-bearing hydrous bridgmanite was found, which formula is \sim MgSi_{0.9}Al_{0.1}O₃H_{0.1} H₂O ~0.8 wt%

The lattice parameters and unit cell volume were larger than those of dry bridgmanite

- 3) The crystal structure was investigated by single crystal X-ray and powder neutron diffraction methods. These show that Al prefer B-site, and hydrogen position between O2-O2 which is c-direction could be the strong candidate.
- 4) The elastic velocity measurement was conducted. The preliminary analysis shows that bulk modulus, Vp and Vs are lower than those of dry bridgmanite.

Future plan

- Determination of hydrogen position precisely.
 Then investigation of the effect of pressure
- 2) Determination of elastic wave velocity precisely, especially under high temperature.
- 3) Determination of EoS precisely,
- 4) The effect of pressure in the maximum water solubility in perovskite.
- 5) Investigation of the effect of Fe $^{3+}$.

Thank you for your attention.