Structure of carbonate-silicate melts and quench glasses and speciation of Y, Sr, Zr

<u>A. SHIRYAEV</u>, A. AVERIN, M. NICKOLSKY – Institute of physical chemistry and electrochemistry RAS, Moscow

V. MURZIN, A. VELIGZHANIN, Y. ZUBAVICHUS - Kurchatov Institute, Moscow

O. SAFONOV, V.O. YAPASKURT – MSU, MOSCOW

O. MATHON - ESRF, Grenoble

J. POHLENZ, M. WILKE - GFZ, Potsdam

T. Irifune – Ehime University

Scientific motivation

- <u>Structure</u> of carbonate-silicate melts a clue to understand their properties and behaviour, especially <u>isotopic and chemical</u> <u>fractionation</u> processes. Challenge for physics and chemistry due to complexity.
- Strontium is interesting on its own (Sr carbonate is present as inclusions in fibrous diamonds) and may serve as a proxy for Ca.
- Y is a proxy for REE.
- Formation of diamonds.

 Formation of large-scale deposits of Rare-Earth elements, Nb, Ta

Methods and samples

- $CaSiO_3 + (CaCO_3 \pm Na_2CO_3)$ in various ratio (from 90:10 to 50:50) + $SrCO_3 + Y_2O_3 + ZrO_2$ (<0.n-5%)
- Ex-situ: HPHT treatment at 4-5.5 GPa 1500-1700 °C
- In situ: Paris-Edinburgh press, 2-5 Gpa 1200-1700 °C
- XAFS at Sr, Y, Zr, Nb K-edges (ESRF, Soleil, KCSR)
- XRD and High-Energy XRD (PETRA III)
- Microprobe
- TEM
- Micro-Raman and micro-IR (in reflection geometry)

X-ray Diffraction (ex situ)

- No traces of initial Sr-Y-Zr compounds (carbonates/oxides)
- Samples consist of silicate glass, calcite (domain size 15-30 nm) +/- minor SiO₂ and residual wollastonite.

Pair distribution function analysis (ex-situ)

X-ray Diffraction (in situ)

We have commissioned the Paris-Edinburgh press at P02.1 beamline at PETRA III synchrotron in Hamburg.

Elemental mapping of quench samples

BSE image

Ca map

Si map

Sr map

Transmission Electron Microscopy

0.2 microns

 Vigorous reaction of many observed carbonate chips under the e-beam indicate that decarbonatisation at HPHT was not strongly pronounced

 Sr partitions between carbonate and silicate phases

Vibrational spectroscopy (ex-situ)

- IR and Raman show presence of sharp carbonate (CO_3^{2-}) peaks and broad features.
- The carbonate phase does not coincide with pure calcite (its presence follows from XRD)
 =>
 - Impurities/defects shift peaks' positions
 - the "dissolved" CO₂ peak position changes with glass density (Morizet et al., 2013)

X-ray Absorption Spectroscopy

In quench samples <u>Sr, Y and Zr</u> may partition between (at least) two phases: silicate glass and carbonate => consistent fitting of XAFS is difficult.

Histogram fits were attempted. Strong influence of background subtraction.

XAFS in situ

Strontium XAFS

Yttrium XAFS

Zirconium XAFS

Zr is largely dissolved in silicate glass and is likely 6-coordinated

Niobium XANES

Nb is not as Nb₂O₅ anymore, but is in pyrochlore-like environment

Conclusions

- Treatment of CaSiO₃:CaCO₃ system at 4-5.5 GPa 1500-1700°C leads to formation of fine mixture of poorly crystalline nanosized carbonate, silicate glass and residual wollasonite.
- On micron-scale trace elements (Sr, Zr, Y) are homogeneously distributed.
- Strontium and yttrium partition between the silicate and carbonate phases; zirconium is largely retained in silicate glass.
- In the most carbonate-rich samples ($CaSiO_3:CaCO_3 = 50:50$) local environment of the studied elements differ considerably from more siliceous ones.