Подход М. Фара к формализации верификационистского принципа

Научный руководитель – Борисов Евгений Васильевич

Пшатова Арина Ивановна

Студент (бакалавр)

Национальный исследовательский Томский государственный университет, Философский факультет, Томск, Россия

E-mail: arina.pshatova@yandex.ru

В нашем мире, очевидно, существует истины, которые не познаны. Верификационистский принцип гласит, что всякая истина может быть познана:

$$P \rightarrow \Diamond KP (1)$$

Парадокс Фитча демонстрирует, что если все истины возможно познать, то это влечет за собой, что они уже познаны. Фитч начинает аргумент с того, что любая истина вообще может быть познана[1]. Однако так как не каждая истина в действительности познана, то существуют такие истины, которые не познаны:

$$Q \& \sim KQ (2)$$

Затем применяется верификационистский принцип:

$$(Q \& \sim KQ) \rightarrow \Diamond K(Q \& \sim KQ) (3)$$

Далее из 1 и 2 следует, что:

$$\Diamond K(Q \& \sim KQ) (4)$$

Оператор К дистрибутивен относительно конъюнкции:

$$\diamondsuit(KQ \& K \sim KQ)$$
 (5)

Если что-то познано в мире, то оно истинно в нем. Следовательно, мы можем избавиться от оператора К и прийти к противоречию (2):

$$\lozenge(KQ \& \sim KQ)$$
 (6)

Прежняя формализация $P \rightarrow \Diamond KP$ не отображает идею познаваемости. Интуитивно очевидно, что нечто может быть познано, но при формализации мы приходим к противоречию.

М. Фара в своей статье «Knowability and the capacity to know»[1] предлагает решение парадокса. Он утверждает, что «может быть познано» не стоит понимать как предложение с оператором возможности. Автор рассматривает «может» в смысле способности (capacity).

Существует способность совершить что-то, но метафизически невозможно эту способность реализовать. К примеру, убийство собственного дедушки. У убийцы есть способность расправиться с дедушкой, но метафизически это невозможно, поскольку существование дедушки - условие для существования убийцы.

В качестве решения Фара предлагает заменить принцип познаваемости на следующий: $AP \to A\∃ x(Cx~Kx~AP)$

Где A - оператор актуальности, Cx - x имеет способность k чему-то, Kx - x знает, что. . . ; Дадим описание языка F, в котором отражен новый принцип.

Пусть у нас будет только один эпистемический агент, следовательно количество модальностей также сводится к одному.

Вокабуляр языка F: множество пропозициональный букв (a,b,c,...); логические связки $(\sim, \&, v, \rightarrow, \Leftrightarrow)$; модальные операторы (A, C, K,); вспомогательные символы (скобки).

Синтаксис языка F: множество правильно построенных формул задается по следующим правилам:

- 1) Каждая пропозициональная буква атомарная формула.
- 2) Любая атомарная формула это формула.
- 3) Если X формула, то ~X формула.
- 4) Если X и Y формулы, а о логический союз, то ХоУ тоже формула.
- 5) Если X формула, то АХ формула.
- 6) Если X формула, то КХ формула.
- 7) Если X формула, то СКХ формула.
- 8) Других формул нет.

Семантика для языка F: модель M для языка F - это упорядоченная пятерка вида $M=\langle G,\,W_A\,,\,R_K\,,\,R_C,\,I\rangle$, где W_A - выделенный актуальный мир; R_K - бинарное эпистемическое отношение достижимости на множестве возможных миров; R_C - отношение способности, бинарное отношение достижимости на множестве возможных миров.

Дадим определение истины в модели. Пусть M - модель для F. Для каждого Г∈G:

- 1) M, $\Gamma \parallel \sim X$ tytk M, $\Gamma \parallel \sim X$;
- 2) M, Γ ||- (X&Y) тттк M, Γ ||- X и M, Γ ||- Y;
- 3) М, Γ ||- (XvY) тттк М, Γ ||- X или М, Γ ||- Y ;
- 4) M, $\Gamma \mid \mid (X \rightarrow Y)$ тттк если M, $\Gamma \mid \mid X$ то M, $\Gamma \mid \mid Y$;
- 5) M, $\Gamma \parallel (X \Leftrightarrow Y)$ tytk M, $\Gamma \parallel X$ tytk M, $\Gamma \parallel Y$;
- 6) М, Γ ||- KX тттк для каждого Δ ($\Delta \in G \& \Gamma R_K \Delta \to M, \Delta$ ||- X);
- 7) M, $\Gamma \parallel AX$ TTTK M, $W_A \parallel P$
- 8) M, Γ ||- CKX тттк для некоторых Δ ($\Delta \in G \& \Gamma R_C \Delta \& M, \Delta$ ||- KX).

Источники и литература

1) Fara M. Knowability and the capacity to know // Springer Science+Business Media. 2010. P. 53–73.