Секция «Дискретная математика и математическая кибернетика»

Составление оптимального расписания движения поездов между двумя станциями, соединенными однопутной железной дорогой с разъездом $Tapacos\ Unья\ Anenceesuv$

Студент (бакалавр)

Московский государственный университет имени М.В.Ломоносова, Физический факультет, Москва, Россия E-mail: ia.tarasoff@yandex.ru

1. Описание проблемы

Задача организации движения на однопутных участках актуальна как для пассажирских, так и для грузовых поездов, т.к. такие участки составляют значительную часть любой железнодорожной сети. В основном железнодорожные линии мира – однопутные; общая длина двухпутных и многопутных дорог составляет около 180 тыс. км (примерно 13 % мировой сети). В работе рассматривается проблема составления оптимального расписания движения поездов между двумя станциями, соединенными однопутной железной дорогой с разъездом. Данные задачи являются предметом интенсивных исследований изза практической значимости и сложной математической природы. Это одна из типичных задач управления транспортными потоками на железной дороге, т.е. задача построения оптимального расписания движения состава на участке с жестким ограничением на пропускную способность путей (т.н. задача об "узких местах"). Первая работа по этой теме была опубликована в 1973 году [1]. Шпигель рассмотрел задачу планирования движения поездов на одноколейной железной дороге с возможностью обгона на станциях. Он первым отметил сходство между задачей планирования движения поездов и задачей теории расписаний для нескольких приборов, рассматривая участки пути как "приборы а поезда как "работы". В [4] описано применение метода ветвей и границ для сети однопутных дорог. Обзор публикаций по моделям и методам планирования движения на железной дороге, в том числе на однопутных линиях, можно найти в [2]. Задача планирования движения между двумя станциями, соединенными однопутной железной дорогой, была исследована в [3].

2. Математическая постановка задачи

Две станции соединены однопутной железной дорогой. Имеется два множества поездов, N_1 и N_2 . Поезда из множества N_1 следуют со станции 1 на станцию 2, поезда из множества N_2 следуют в обратном направлении со станции 2 на станцию 1. Между станциями находится разъезд для пропуска встречных поездов. Исходные данные:

- разъезд вмещает 1 поезд;
- минимальное время между отправлением двух поездов с одной станции β (минимальный интервал между двумя поездами);
- время прохождения поездами отрезков справа и слева и от разъезда p_1 и p_2 , без потери общности предположим, что $p_1 > p_2$ (скорости всех поездов одинаковы и постоянны);
- число поездов во множестве $N_1 n_1$;
- число поездов во множестве $N_2 n_2$;
- все поезда поступили в нулевой момент времени, т.е. моменты поступления для всех поездов $r_i^s = 0$ для всех $i = 1, 2, ..., n_s$; $s \in \{1, 2\}$ (s номер станции, i номер поезда).

Необходимо составить оптимальное расписание движения поездов, т.е. для каждого поезда номер i со станции s ($i = 1, 2, ..., n_s$; $s \in \{1, 2\}$) задать:

- время начала движения S_i^s ;
- время стоянки k_i^s ;
- путь прохождения разъезда tr_i^s (от английского "track"), $tr_i^s \in \{1,2\}$, 1 обозначает главный путь, 2 дополнительный.

Путь прохождения введен для того, чтобы различать проходящий и пропускающий поезда в случае, если они одновременно прибыли к разъезду. Определим время прибытия поезда как C_i^s . Целевой функцией является время окончания перевозок C_{max} :

$$C_{max} = \max_{i=1,2,\dots,n_s; s \in \{1,2\}} \{C_i^s\}.$$

3. Решение задачи

Для данной задачи был получен точный алгоритм составления оптимального расписания. В случае выполнении условия $\beta \leq 2(p_1-p_2)$, при оптимальном расписании в разъезде будет останавливаться только один поезд. Допустимы два варианта с равными значениями целевой функции C_{max} – в разъезде делает остановку поезд со станции 1, либо поезд со станции 2. Опишем алгоритм движения для первого варианта:

- в начальный момент времени поезд со станции 1 начинает движение;
- через минимальный интервал β со станции 1 последовательно начинают движение оставшиеся n_1-1 поездов;
- \bullet последний поезд номер n_1 со станции 1 встает в разъезд;
- все n_2 поезда со станции 2 выходят один за другим с минимальным интервалом, начиная с момента прибытия поезда номер n_1-1 со станции 1 на станцию 2 (это возможно в случае, если $2p_2 > \beta$, т.к. последний поезд со станции 1 окажется у разъезда раньше, чем первый поезд со станции 2);
- когда последний поезд номер n_2 со станции 2 пройдет разъезд, поезд номер n_1 со станции 1 покинет разъезд и продолжит движение к станции 2.

Алгоритм движения для второго варианта:

- в начальный момент времени поезд со станции 1 и поезд со станции 2 начинают движение, поезд со станции 2 заходит в разъезд;
- через минимальный интервал β со станции 1 последовательно начинают движение оставшиеся n_1-1 поездов;
- \bullet когда последний поезд номер n_1 со станции 1 пройдет разъезд, поезд номер 1 со станции 2 покинет разъезд и продолжит движение к станции 1;
- оставшиеся $n_2 1$ поезда со станции 2 выходят один за другим с минимальным интервалом, начиная с момента прибытия поезда номер n_1 со станции 1 на станцию 2.

В данных алгоритмах значение целевой функции одинаково и определяется по формуле

$$C_{max} = 2(p_1 + p_2) + \beta(n_1 + n_2 - 3).$$

Если выполняется условие $\beta \ge 2(p_1 - p_2)$, то при оптимальном расписании в разъезде делают остановку два поезда – поезд со станции 1 и поезд со станции 2. Алгоритм движения:

• в начальный момент времени поезд со станции 1 и поезд со станции 2 начинают движение, поезд со станции 2 заходит в разъезд;

- через минимальный интервал β со станции 1 последовательно начинают движение $n_1 2$ поездов (на станции 1 остается один поезд);
- когда поезд номер $n_1 1$ со станции 1 пройдет разъезд, поезд номер 1 со станции 2 покинет разъезд и продолжит движение к станции 1;
- в момент прибытия поезда номер 1 со станции 2 на станцию 1 последний поезд со станции 1 начинает движение и делает остановку в разъезде;
- ullet оставшиеся n_2-1 поезда со станции 2 выходят один за другим с минимальным интервалом.

Целевая функция C_{max} :

$$C_{max} = 4(p_1 - \beta) + (n_1 + n_2)\beta.$$

В каждом из вариантов поезда с одной станции движутся группой — начинают движение последовательно и с минимальным интервалом, т.е. сначала проходят все поезда с одной станции, затем все поезда с другой (не считая поезда в разъезде). Для случая, когда в разъезде делают остановку два поезда, существует еще один вариант оптимального расписания. В начальный момент один поезд выходит со станции 1, останавливается в разъезде и пропускает n_2-1 поезда, идущих со станции 2 на станцию 1. Затем последний поезд со станции 2 начинает движение и делает остановку в разъезде, пропуская n_1-1 поезда со станции 1 на станцию 2.

4. Выводы

Для случая одновременного поступления поездов и с одним разъездом, вмещающим 1 поезд, получен точный алгоритм. Алгоритм применим для других регулярных целевых функций, таких как максимальное временное смещение

$$L_{max} = \max_{i=1,2,\dots,n_s; s \in \{1,2\}} L_i^s,$$

где

$$L_i^s = C_i^s - d_i^s,$$

и d_i^s — директивный срок поезда номер i со станции s. Если все директивные сроки равны нулю, задача минимизации максимального временного смещения сводится к задаче минимизации времени окончания перевозок. Еще одна регулярная целевая функция — функция суммарного запаздывания

$$T_{\Sigma} = \sum_{i=1,2,\dots,n_s; s \in \{1,2\}} T_i^s,$$

где

$$T_i^s = \max[0, C_i^s - d_i^s].$$

Для применения данного алгоритма в случае целевых функций суммарного запаздывания и максимального временного смещения достаточно пронумеровать поезда в порядке неубывания директивных сроков.

Источники и литература

- 1) Szpigel, B. Optimal train scheduling on a single line railway. // Oper Res. 1973. 344-351.
- 2) Lusby R.M., Larsen J., Ehrgott M., Ryan D. Railway track allocation: Models and methods. // OR Spectr. 2011. 33(4). p 843-883.
- 3) Gafarov E.R., Dolgui A.B., and Lazarev A.A. Two-station single track railway scheduling problem with equal speed of trains. // Computers and Industrial Engineering. 2013. (in print).

4) Higgins A., Kozan E., Ferreira L. Optimal scheduling of trains on a single line track. // Transportation Research Part B: Methodological. 1996. 30(2). 147-161.

Слова благодарности

Автор выражает признательность своему научному руководителю $A.\ A.\ Лазареву$ за всестороннюю помощь и $Я.\ Зиндеру$ за ценные консультации.