Секция «Вещественный, комплексный и функциональный анализ»

Совместные распределения измеримых многочленов Георгий Зеленов Ильич

Acпирант

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра теории функций и функционального анализа, Москва, Россия

E-mail: zelenovyur@qmail.com

<р>Благодаря многочисленным применениям в теории вероятностей и математической статистике многочлены от гауссовских случайных величин представляют собой весьма важный объект. В частности, большой интерес представляет исследование совместных распределений случайных векторов, компоненты которых являются такими многочлена- $^{\text{MU}}\cdot\Pi$ усть $X=\mathbb{R}^{\infty},$ а мера γ на X — счетная степень стандартной гауссовской меры на прямой. (благодаря теореме об изоморфизме ([1], Theorem 3.4.4) случай, когда X — произвольное локально-выпуклое пространство с центрированной радоновской гауссовской мерой γ , сводится к нашему). Пространство γ -измеримых полиномов сепени k \mathcal{X}_k определяется как замыкание в $L^2(\gamma)$ пространства полиномов степени k от конечного числа переменных. Винеровский хаос \mathcal{H}_k — это ортогональное дополнение к \mathcal{X}_{k-1} в \mathcal{X}_{k-1} в докладе будет доказан следующий факт: Пусть $F,G\in\mathcal{X}_k$. Тогда пара (F,G) задает случайный вектор. Пусть распределение этого вектора не является абсолютно непрерывным относительно меры Лебега на \mathcal{R}^2 . Тогда найдется ненулевая пара чисел a и b, такая что $aF + bG \in \mathcal{X}_{k-1}$. В частности, если F и G лежат в \mathcal{H}_k , и распределение (F,G) не является абсолютно непрерывным, то F и G линейно зависимы. Таким образом, получен положительный ответ на вопрос об условиях алгебраической зависимости измеримых многочленов, поставленный в [2]: распределение двумерного вектора (F, G), компоненты которого входят в однородный винеровский хаос \mathcal{H}_k , не является абсолютно непрерывным в точности тогда, когда F и G линейно зависимы.

Источники и литература

- 1) Bogachev V.I. Gaussian measures. Amer. Math. Soc., Providence, Rhode Island, 1998.
- 2) Nourdin I., Nualart D., Poly G. Absolute continuity and convergence of densities for random vectors on Wiener chaos // Electron. J. Probab. 2013. V. 18. № 22.

Слова благодарности

Я благодарен моему научному руководителю, Богачеву Владимиру Игоревичу, за то что он рассказал мне об этой задаче и за полезные обсуждения.