Секция «Вещественный, комплексный и функциональный анализ»

О слабо периодических мерах Гиббса для антиферромагнитной модели Поттса с внешним полем на дереве Кэли.

Рахматуллаев Музаффар Мухаммаджанович

Кандидат наук

Национальный университет Узбекистана, Ташкент, Узбекистан E-mail: mrahmatullaev@rambler.ru

Понятие меры Гиббса для модели Поттса на дереве Кэли вводится обычным образом (см. [5], [8]-[10]). В работе [1] изучена ферромагнитная модель Поттса с тремя состояниями на дереве Кэли второго порядка и показано существование критической температуры T_c такой, что при $T \in (0, T_c)$ существуют три трансляционно-инвариантных и несчетное число не трансляционно-инвариантных мер Гиббса. В работах [6], [7] вводится понятие слабо периодической меры Гиббса и для модели Изинга найдены некоторые такие меры. В работе [2] доказано, что на дереве Кэли трансляционно-инвариантная мера Гиббса антиферромагнитной модели Поттса с внешним полем единственна. В этой работе изучается слабо периодическая мера Гиббса для антиферромагнитной модели Поттса с внешним полем.

Пусть $\tau^k = (V, L), k \ge 1$ есть дерево Кэли порядка k, т.е. бесконечное дерево, из каждой вершины которого выходит ровно k+1 ребро, где V - множество вершин, L - множество ребер τ^k .

Пусть G_k - свободное произведение k+1 циклических групп $\{e,a_i\}$ второго порядка с образующими $a_1,a_2,...,a_{k+1},$ соответственно т.е. $a_i^2=e$.

Существует взаимно-однозначное соответствие между множеством вершин V дерева Кэли порядка k и группой G_k (см. [2]-[4]).

Мы рассмотрим модель, где спиновые переменные принимают значения из множества $\Phi = \{1, 2, \dots, q\}, \ q \geq 2$ и расположены на вершинах дерева. Тогда конфигурация на V определяется как функция $x \in V \to (x) \in \Phi$; множество всех конфигураций совпадает с $\Omega = \Phi^V$.

Гамильтониан модели Поттса с внешним полем α определяется как

$$H(\sigma) = -J \sum_{\langle x,y \rangle \in L} \delta_{\sigma(x)\sigma(y)} - \alpha \sum_{x \in V} \delta_{1\sigma(x)}, \tag{1}$$

где $J, \alpha \in \mathbb{R}$.

Известно, что каждой мере Гиббса модели Поттса на дереве Кэли соответствует совокупность векторов $h = \{h_x, x \in T^k\}$, удовлетворяющих

$$h_x = \sum_{y \in S(x)} F(h_y, \theta, \alpha), \tag{2}$$

где $F: h = (h_1, \dots, h_{q-1}) \in \mathbb{R}^{q-1} \to F(h, \theta, \alpha) = (F_1, \dots, F_{q-1}) \in \mathbb{R}^{q-1}$ определяется как:

$$F_i = \alpha \beta \delta_{1i} + \ln \left(\frac{(\theta - 1)e^{h_i} + \sum_{j=1}^{q-1} e^{h_j} + 1}{\theta + \sum_{j=1}^{q-1} e^{h_j}} \right),$$

и $\theta = \exp(J\beta)$, S(x)— множество прямых потомков точки x (см., например, [2]).

Пусть $G_k/G_k^* = \{H_1,...,H_r\}$ фактор группа, где G_k^* -нормальный делитель конечного

Определение 1. Совокупность векторов $h = \{h_x, x \in G_k\}$ называется G_k^* — периодической, если $h_{yx} = h_x$ для $\forall x \in G_k, y \in G_k^*$.

 G_k – периодические совокупности называются трансляционно-инвариантными.

Определение 2. Совокупность векторов $h = \{h_x, x \in G_k\}$ называется G_k^* -слабо периодической, если $h_x = h_{ij}$ при $x \in H_i, x_{\downarrow} \in H_j$, т.е. значение функции h_x зависит только от классов принадлежности x и x_{\downarrow} .

Определение 3. Мера μ называется G_k^* -периодической (слабо периодической), если она соответствует G_k^* -периодической (слабо периодической) совокупности векторов h.

Пусть q-произвольное, т.е. $\sigma:V\to\Phi=\{1,2,3,...,q\}$. В данной работе рассмотрим $q \geq 2$. Пусть $A \subset \{1, 2, ..., k+1\}$. Рассмотрим $H_A = \{x \in G_k : \sum_{j \in A} w_j(x)$ -четно $\}$, где $w_i(x)$ -число a_i в слове $x, G_k/H_A = \{H_A, G_k \setminus H_A\}$ -фактор группа. Для простоты обозначим $H_0 = H_A, \, H_1 = G_k \setminus H_A$. В силу (2) для H_A - слабо периодические совокупности векторов

$$\begin{cases}
h_1 = (k - |A|)F(h_1, \theta) + |A|F(h_2, \theta) \\
h_2 = (|A| - 1)F(h_3, \theta) + (k + 1 - |A|)F(h_4, \theta) \\
h_3 = (|A| - 1)F(h_2, \theta) + (k + 1 - |A|)F(h_1, \theta) \\
h_4 = (k - |A|)F(h_4, \theta) + |A|F(h_3, \theta).
\end{cases}$$
(3)

Рассмотрим антиферромагнитную модель Поттса с внешним полем. Изучив систему уравнений (3), доказана следующая

Теорема. При $|A|=k, k\geq 6$ и $\alpha\in(\alpha_1,\alpha_2)$ для антиферромагнитной модели Поттса с внешним полем существуют не менее двух H_A — слабо периодических (не периодических) мер Гиббса, где $\alpha_i = kT \ln b_i$, T— температура и

$$b_1 = \frac{(k-1-\sqrt{k^2-6k+1})(1-\theta)(\theta+q-1)z_*^{\frac{k-1}{k}}}{2(\theta+q-2+z_*)^2},$$

$$b_2 = \frac{(k-1+\sqrt{k^2-6k+1})(1-\theta)(\theta+q-1)z_*^{\frac{k-1}{k}}}{2(\theta+q-2+z_*)^2}.$$
 Источники и литература

- 1) Ганиходжаев Н.Н. О чистых фазах ферромагнитной модели Поттса с тремя состояниями на решетке Бете второго порядка// ТМФ, 1990. Т.85. 2, С. 163–175.
- 2) Ганиходжаев Н.Н., Розиков У.А. Описание периодических крайних гиббсовских мер некоторых решеточных моделей на дереве Кэли// ТМФ, 1997. Т.111, 1, С.109–117.
- 3) Ганиходжаев Н.Н., Розиков У.А. Групповое представление леса Кэли и его некоторые применения // Изв. РАН. Сер. матем. 2003. Т.67. 1 С. 21–32.
- 4) {11} Ганиходжаев Н.Н. Групповое представление и автоморфизмы дерева Кэли// Доклады АН РУз. 1994. No 4, С.3-5.}
- 5) Георги Х.О. Гиббсовские меры и фазовые переходы, Мир,М., 1992.
- 6) Розиков У.А., Рахматуллаев М.М. Описание слабо периодических мер Гиббса модели Изинга на дереве Кэли// ТМФ, 2008. Т.156. 2, С. 292-302.

- 7) Розиков У.А., Рахматуллаев М.М. Слабо периодические основные состояния и меры Гиббса для модели Изинга с конкурирующими взаимодействиями на дереве Кэли// ${\rm TM\Phi},\,2009.\,\,{\rm T}.160.\,\,3,\,{\rm C}.\,\,507\text{-}516.$
- 8) Синай Я. Г. Теория фазовых переходов. Строгие результаты, Наука, М., 1980.
- 9) Preston C. J. Gibbs States on Countable Sets, Cambridge Tracts Math., 68, Cambridge Univ. Press, Cambridge, 1974.
- 10) Rozikov U.A. Gibbs measures on Cayley trees. World scientific. 2013.