Секция «Вещественный, комплексный и функциональный анализ»

Формулы Фейнмана для начально-краевых задач в областях римановых многообразий

Дубравина Виктория Андреевна

Acпирант

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра теории функций и функционального анализа, Москва, Россия

E-mail: dubravina vika@mail.ru

Рассматриваются лагранжевы формулы Фейнмана для операторной полугруппы, которая порождена уравнением типа теплопроводности относительно функций, областью определения которых является область K с гладкой границей ℓ в компактном римановом многообразии K_2 . Предполагается, что K изометрически вложено в \mathbb{R}^3 . При этом решение должно удовлетворять следующим граничным условиям на кривой ℓ : если f — решение, то для любой точки $z \in \ell$ выполнено $a(z)f(z)+b(z)f_n'(z)=0$; где $f_n'(\cdot)$ — производная f вдоль единичной нормали к ℓ . Оператор в правой части исследуемого уравнения $\frac{\partial \varphi}{\partial t} = A\varphi$ определяется так: $A\varphi(t,\cdot) = c(\cdot)\Delta\varphi(t,\cdot)$. Пусть для каждого $t \geq 0$, $F(t) = I_2F_2(t)F_1(t)I_1$, где $F_1(t): L_1(K) \to L_1(K_1)$, $F_2(t): L_1(K_1) \to L_1(K)$.

$$(F_1(t)f)(x,y) = \varphi_1(x,t) \left(\frac{1}{\sqrt[3]{t}} \int_0^{\sqrt[3]{t}} f(\xi,y) d\xi + b(y,t)(x-\sqrt[3]{t}) \right) + \varphi_2(x,t)f(x,y).$$

$$(F_2(t)f)(q) = \frac{1}{k(t,q)} \int_{K_1} e^{-\frac{(q-r,q-r)}{4tc(q)}} f(r) dr, \quad k(t,q) = \int_{K_1} e^{-\frac{(q-r,q-r)}{4tc(q)}} dr.$$

В окрестности любой точки $z \in \ell$ так выбираются локальные координаты x, y, что x — натуральный параметр вдоль кривой ℓ , при каждом x координата y задает натуральную параметризацию на геодезической в K, выпущенной из точки z. K_1 — область, такая, что $K \subset K_1 \subset K_2$. Для каждого $t \geq 0$ $\varphi_1(\cdot,t)$ и $\varphi_2(\cdot,t)$ — функции, определяющие разбиение единицы на положительной полуоси \mathbb{R} . Функции b(y,t) зависят от f и выбираются так, что $I_2F_1(t)f$ удовлетворяет граничным условиям.

Теорема. Пусть $\psi:[0,\infty)\to L_1(K)$ — решение поставленной задачи Коши с начальным условием $f_0\in L_1(K)$. Тогда для любого t>0 справедлива следующая формула Фейнмана:

$$\psi(t) = \lim_{k \to \infty} F(t/k)^k f_0.$$

При этом, каково бы ни было $\alpha > 0$, сходимость последовательности $F(t/k)^k f_0$ равномерна по $t \in [0, \alpha]$.

Источники и литература

- 1) A.S. Plyashechnik. Feynman formulas for second-order parabolic equations with parabolic coeffcients// Russian Journal of Mathematical Physics. 2013. Vol. 20. No 3.
- 2) O.G.Smolyanov, D.S.Tolstyga. Feynman formulas for stochastic and Quantum Dynamics of Particles in Multidimensional Domains// Doklady Mathematics. 2013. Vol. 88. No. 2. pp. 541-544

Слова благодарности

Автор глубоко признателен профессору Смолянову Олегу Георгиевичу за постановку задачи и полезные обсуждения.