Секция «Вещественный, комплексный и функциональный анализ»

О вложении разных метрик обобщенных классов Никольского Исмагилов Тимур Фаритович

Выпускник (специалист)

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра теории функций и функционального анализа, Москва, Россия

E-mail: tismaqilov@mail.ru

Хорошо известен класс функций Никольского $H_p^{\vec{r}}$ и теоремы вложения для него(см. [1]). В этой работе вводятся классы функций $F_2(1)H_p^{\vec{r}}$, являющиеся обобщением класса $H_n^{\vec{r}}$, и для одного из них приводится теорема вложения разных метрик.

Будем писать, что $f \in L_p$, если $f(x_1, \dots, x_n)$ - измеримая функция n переменных, 2π периодическая по каждому из них и такая, что $||f||_p < \infty$, где

$$||f||_p = \left(\int\limits_0^{2\pi} \dots \int\limits_0^{2\pi} |f|^p dx_1 \dots dx_n \right)^{1/p},$$
 если $1 \leq p < \infty,$ $||f||_p = \sup_{x_i \in [0,2\pi], \, i=1,\dots,n} |f|,$ если $p = \infty.$

$$x_{i\in[0,2\pi],i=1,\dots,n}$$
 Через $\omega_{k_{i_1}\dots k_{i_s}}(f,\delta_{i_1},\dots,\delta_{i_s})_p$ обозначим s -мерный $(1\leq s\leq n)$ модуль гладкости порядка k_{i_j} ($k_{i_j}\in\mathbb{N}$) по переменной x_{i_j} функции $f\in L_p$, то есть
$$\omega_{k_{i_1}\dots k_{i_s}}(f,\delta_{i_1},\dots,\delta_{i_s})_p = \sup_{\substack{h_{i_1}\leq \delta_{i_1},\dots,h_{i_s}\leq \delta_{i_s}\\h_{i_1}\dots h_{i_s}}}\|\Delta_{h_{i_1}\dots h_{i_s}}^{k_{i_1}\dots k_{i_s}}f\|_p,$$
 где $\Delta_{h_i}^{k_i}f=\sum_{\nu_i=0}^{k_i}(-1)^{k_i-\nu_i}C_{k_i}^{\nu_i}f(x_1,\dots,x_i+\nu_i h_i,\dots,x_n),\ \Delta_{h_{i_1}\dots h_{i_s}}^{k_{i_1}\dots k_{i_s}}f=\Delta_{h_{i_1}}^{k_{i_1}}\varphi,\ \varphi=\Delta_{h_{i_2}\dots h_{i_s}}^{k_{i_2}\dots k_{i_s}}f.$

Напомним, что $f \in H_p^{\vec{r}}$, если $r = \{r_1, \dots, r_n\}$, $r_i > 0$, $f \in L_p$, $\omega_{k_i}(f, \delta_i) \leq c_1 \delta_i^{r_i}$, $\forall i = 1, \dots, n$, где $k_i > r_i$, $\delta_i \in (0, 1]$, постоянная c_1 не зависит от f и δ_i .

Теорема Никольского. Если
$$f \in H_p^{\vec{r}}, \ 1 \le p < q \le \infty, \ r_1 = \ldots = r_n = r > n \left(\frac{1}{p} - \frac{1}{q} \right),$$
 то $f \in H_q^{\vec{\rho}}$, где $\rho_1 = \ldots = \rho_n = r - n \left(\frac{1}{p} - \frac{1}{q} \right).$

Рассмотрим классы функций $F_2(1)H_p^{\vec{r}}$, являющиеся обобщением класса $H_p^{\vec{r}}$. Будем писать, что $f \in F_2(1)H_p^{\vec{r}}$, если $r = \{r_1, \dots, r_n\}, r_i > 0$, и выполнены условия:

- 1) $f \in L_p$,
- 2) $\omega_{k_i}(f, \delta_i)_p \leq c_2 \delta_i^{r_i}, \ \forall i = 1, \dots, n,$
- 3) $\omega_{k_1k_i}(f, \delta_1, \delta_i)_p \le c_3 \delta_1^{r_1} \delta_i^{r_i}, \ \forall i = 2, \dots, n,$

где $k_i > r_i$, $\delta_i \in (0,1]$, постоянные c_2, c_3 не зависят от f и δ_i .

Теорема. Если
$$f \in F_2(1)H_p^{\vec{r}}, \ 1 \leq p < q \leq \infty, \ r_1 = \ldots = r_n = r > (n-1)\left(\frac{1}{p} - \frac{1}{q}\right)$$
, то $f \in F_2H_p^{\vec{\rho}}$, где $\rho_1 = r - \left(\frac{1}{p} - \frac{1}{q}\right)$, $\rho_2 = \ldots = \rho_n = r - (n-1)\left(\frac{1}{p} - \frac{1}{q}\right)$.

Работа выполнена при поддержке РФФИ проект №15-01-01236 и программы "Ведущие научные школы РФ" (проект НШ-3682.2014.1).

Источники и литература

1) Никольский С.М. Приближение функций многих переменных и теоремы вложения. М., Наука, 1977.